Bounded Martian satellite relative motion

被引:0
|
作者
Guy Marcus
Pini Gurfil
机构
[1] Technion – Israel Institute of Technology,Faculty of Aerospace Engineering
关键词
Martian orbits; Bounded formation flying; Frozen orbits; Gravitational perturbations;
D O I
暂无
中图分类号
学科分类号
摘要
Satellite relative motion around the Earth has been thoroughly studied during the last two decades. However, considerably less attention has been given to the study of satellite relative motion around Mars. As the cost of space technologies decreases and more space missions are within reach, formation flying missions around Mars have the potential to benefit future exploration missions launched to the Red Planet. A key parameter in such missions will be the frequency at which the spacecraft need to perform formation-keeping maneuvers to compensate for unwanted drifts due to differential perturbations. The Martian J3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_3$$\end{document} and J4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_4$$\end{document} gravitational harmonics are significant enough to warrant a dedicated investigation of bounded satellite relative motion configurations. In this study, we derive conditions for bounded satellite relative motion in non-critical inclinations around Mars, while considering its gravitational harmonics up to J4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_4$$\end{document}. We first introduce a family of stable frozen orbits facilitating the implementation of formation flying and then apply differential nodal precession negation and differential periapsis rotation negation methods while considering the gravitational harmonics up to J4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_4$$\end{document}. Using this procedure, we demonstrate how the secular growth of the relative distance can be arrested during long time intervals.
引用
收藏
相关论文
共 50 条
  • [31] On the stability of relative programmed motion of satellite-gyrostat
    El-Gohary, A
    MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (04) : 371 - 379
  • [32] The characterization of formation flying satellite relative motion orbits
    Alfriend, KT
    Gim, DW
    Vadali, SR
    SPACEFLIGHT MECHANICS 2002, VOL 112, PTS I AND II, 2002, 112 : 577 - 583
  • [33] Modeling and Analysis of the Bounds of Periodical Satellite Relative Motion
    Dang, Zhaohui
    Wang, Zhaokui
    Zhang, Yulin
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (06) : 1984 - 1998
  • [34] Satellite relative motion using differential equinoctial elements
    Gim, DW
    Alfriend, KT
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 92 (04): : 295 - 336
  • [35] Optimal Satellite Transfers Using Relative Motion Dynamics
    Ketema, Yohannes
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (05) : 1508 - 1518
  • [36] THEONA theory of relative satellite motion flying in the formation
    Golikov, A
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS, 2004, 548 : 59 - 64
  • [37] SAFE RELATIVE MOTION TRAJECTORY PLANNING FOR SATELLITE INSPECTION
    Frey, Gregory R.
    Petersen, Christopher D.
    Leve, Frederick A.
    Girard, Anouck R.
    Kolmanovsky, Ilya V.
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1039 - 1058
  • [38] Bounded, periodic relative motion using canonical epicyclic orbital elements
    Kasdin, NJ
    Kolemen, E
    Spaceflight Mechanics 2005, Vol 120, Pts 1 and 2, 2005, 120 : 1381 - 1398
  • [39] MOTION OF MARTIAN SATELLITES
    SHOR, VA
    CELESTIAL MECHANICS, 1975, 12 (01): : 61 - 75
  • [40] RELATIVE SATELLITE MOTION SOLUTIONS USING CURVILINEAR COORDINATE FRAMES
    Perez, Alex
    Lovell, T. Alan
    Geller, David K.
    Newman, Brett
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 2113 - 2134