Boundary Effects in Superfluid Films

被引:0
|
作者
Norbert Schultka
Efstratios Manousakis
机构
[1] Institut für Theoretische Physik,Technische Hochschule Aachen
[2] Florida State University,Department of Physics and Center for Materials Research and Technology
来源
关键词
Phase Transition; Critical Temperature; Renormalization Group; Periodic Boundary Condition; Scaling Function;
D O I
暂无
中图分类号
学科分类号
摘要
We have studied the superfluid density and the specific heat of the x — y model on lattices L × L × H with\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{L}} \gg {\text{H}}$$ \end{document}(i.e. on lattices representing a film geometry) using the Cluster Monte Carlo method. In the H-direction we applied staggered boundary conditions so that the order parameter on the top and bottom layers is zero, whereas periodic boundary conditions were applied in the L-directions. We find that the system exhibits a Kosterlitz–Thouless phase transition at the H-dependent temperature\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{T}}_{\text{c}}^{{\text{2D}}} $$ \end{document}below the critical temperature Tλof the bulk system. However, right at the critical temperature the ratio of the areal superfluid density to the critical temperature is H-dependent in the range of film thicknesses considered here. We do not find satisfactory finite-size scaling of the superfluid density with respect to H for the sizes of H studied. However, our numerical results can be collapsed onto a single curve by introducing an effective thickness Heff = H + D (where D is a constant) into the corresponding scaling relations. We argue that the effective thickness depends on the type of boundary conditions. Scaling of the specific heat does not require an effective thickness (within error bars) and we find good agreement between the scaling function f1calculated from our Monte Carlo results, f1calculated by renormalization group methods, and the experimentally determined function f1.
引用
下载
收藏
页码:733 / 762
页数:29
相关论文
共 50 条
  • [41] SUPERFLUID FILMS IN POROUS-MEDIA
    MACHTA, J
    GUYER, RA
    PHYSICAL REVIEW LETTERS, 1988, 60 (20) : 2054 - 2057
  • [42] VORTEX PINNING IN THIN SUPERFLUID FILMS
    MCCAULEY, JL
    ALLEN, CW
    LIPPS, FW
    PHYSICS LETTERS A, 1984, 103 (04) : 215 - 219
  • [43] MOVIE FILMS OF CAVITATION IN SUPERFLUID HELIUM
    MOSSE, A
    CHU, ML
    FINCH, RD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1970, 47 (05): : 1258 - &
  • [44] SOLITONS IN SUPERFLUID-HELIUM FILMS
    ADAMENKO, IN
    POLUEKTOV, YM
    FIZIKA NIZKIKH TEMPERATUR, 1981, 7 (04): : 419 - 423
  • [45] SUPERFLUID FRACTION IN THIN HELIUM FILMS
    CHESTER, M
    YANG, LC
    PHYSICAL REVIEW LETTERS, 1973, 31 (23) : 1377 - 1380
  • [46] Nonlinear AC response in superfluid films
    Giorgini, S
    Bowley, RM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1996, 102 (1-2) : 171 - 191
  • [47] EFFECTS OF HE-4 COVERAGE FOR THE BOUNDARY-CONDITION OF SUPERFLUID HE-3
    KIM, D
    NAKAGAWA, M
    ISHIKAWA, O
    HATA, T
    KODAMA, T
    KOJIMA, H
    PHYSICA B, 1994, 194 : 821 - 822
  • [48] CONSISTENT CALCULATION OF BOUNDARY EFFECTS IN THIN SUPERCONDUCTING FILMS
    YU, M
    STRONGIN, M
    PASKIN, A
    PHYSICAL REVIEW B, 1976, 14 (03): : 996 - 1001
  • [49] BOUNDARY CONDITIONS AND QUANTUM EFFECTS IN THIN SUPERCONDUCTING FILMS
    PASKIN, A
    SINGH, AD
    PHYSICAL REVIEW, 1965, 140 (6A): : 1965 - &
  • [50] GRAIN BOUNDARY DIFFUSION EFFECTS IN FILMS OF GOLD ON CHROMIUM
    KENRICK, PS
    NATURE, 1968, 217 (5135) : 1249 - &