On the word problem and the conjugacy problem for groups of the formF/V(R)

被引:0
|
作者
M. I. Anokhin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 1997年 / 61卷
关键词
word problem; conjugacy problem; power problem; variety of groups; Abelian variety of groups;
D O I
暂无
中图分类号
学科分类号
摘要
LetF be a free group with at most countable system\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} of free generators, letR be its normal subgroup recursively enumerable with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document}, and let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V}$$ \end{document} be a variety of groups that differs from\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{O}$$ \end{document} and for which the corresponding verbal subgroupV of the free group of countable rank is recursive. It is proved that the word problem inF/V(R) is solvable if and only if this problem is solvable inF/R, and if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|\mathfrak{x}| \geqslant 3$$ \end{document}, then there exists anR such, that the conjugacy problem inF/R is solvable, but this problem is unsolvable inF/V(R) for any Abelian variety\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{V} \ne \mathfrak{C}$$ \end{document} (all algorithmic problems are regarded with respect to the images of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{x}$$ \end{document} under the corresponding natural epimorphisms).
引用
收藏
页码:3 / 8
页数:5
相关论文
共 50 条