Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS

被引:0
|
作者
Mykael Cardoso
Carlos M. Guzmàn
Ademir Pastor
机构
[1] UFPI,Department of Mathematics
[2] UFF,Department of Mathematics
[3] IMECC-UNICAMP,Department of Mathematics
来源
关键词
Biharmonic Schr; dinger equation; Local well-posedness; Global well-posedness; Concentration; 35Q55; 35B44; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the inhomogeneous biharmonic nonlinear Schr [inline-graphic not available: see fulltext] dinger (IBNLS) equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, i∂tu+Δ2u-|x|-b|u|2σu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i \partial _t u +\Delta ^2 u -|x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$\end{document}where σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 0$$\end{document} and b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > 0$$\end{document}. We first study the local well-posedness in H˙sc∩H˙2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{H}}^{s_c}\cap \dot{H}^2 $$\end{document}, for N≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 5$$\end{document} and 0<sc<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_c<2$$\end{document}, where sc=N2-4-b2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_c=\frac{N}{2}-\frac{4-b}{2\sigma }$$\end{document}. Next, we established a Gagliardo-Nirenberg type inequality in order to obtain sufficient conditions for global existence of solutions in H˙sc∩H˙2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{s_c}\cap \dot{H}^2$$\end{document} with 0≤sc<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le s_c<2$$\end{document}. Finally, we study the phenomenon of Lσc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\sigma _c}$$\end{document}-norm concentration for finite time blow up solutions with bounded H˙sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{s_c}$$\end{document}-norm, where σc=2Nσ4-b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _c=\frac{2N\sigma }{4-b}$$\end{document}. Our main tool is the compact embedding of L˙p∩H˙2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{L}^p\cap \dot{H}^2$$\end{document} into a weighted L2σ+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2\sigma +2}$$\end{document} space, which may be seen of independent interest.
引用
收藏
页码:1 / 29
页数:28
相关论文
共 50 条
  • [1] Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS
    Cardoso, Mykael
    Guzman, Carlos M.
    Pastor, Ademir
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 1 - 29
  • [2] SMALL DATA GLOBAL WELL-POSEDNESS FOR THE INHOMOGENEOUS BIHARMONIC NLS IN SOBOLEV SPACES
    An, Jinmyong
    Ryu, Pyongjo
    Kim, Jinmyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 2789 - 2802
  • [3] On the global well-posedness of focusing energy-critical inhomogeneous NLS
    Yonggeun Cho
    Seokchang Hong
    Kiyeon Lee
    Journal of Evolution Equations, 2020, 20 : 1349 - 1380
  • [4] Global Well-Posedness of the Energy-Critical Defocusing NLS on
    Ionescu, Alexandru D.
    Pausader, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (03) : 781 - 831
  • [5] Global well-posedness and scattering for the coupled NLS in critical spaces
    Deng, Mingming
    Wang, Ying
    APPLICABLE ANALYSIS, 2024, 103 (15) : 2728 - 2758
  • [6] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Cardoso, Mykael
    Farah, Luiz Gustavo
    Guzman, Carlos M.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1337 - 1367
  • [7] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Mykael Cardoso
    Luiz Gustavo Farah
    Carlos M. Guzmán
    Journal of Dynamics and Differential Equations, 2023, 35 : 1337 - 1367
  • [8] Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation
    Campos, Luccas
    Correia, Simao
    Farah, Luiz Gustavo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [9] Well-posedness and scattering of inhomogeneous cubic-quintic NLS
    Cho, Yonggeun
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [10] LOCAL WELL-POSEDNESS OF THE FRACTIONAL INHOMOGENEOUS NLS IN SOBOLEV SPACES
    Ghanmi, Radhia
    Boulaaras, Salah
    Saanouni, Tarek
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (10): : 3035 - 3045