LOCAL WELL-POSEDNESS OF THE FRACTIONAL INHOMOGENEOUS NLS IN SOBOLEV SPACES

被引:0
|
作者
Ghanmi, Radhia [1 ]
Boulaaras, Salah [2 ]
Saanouni, Tarek [2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR03ES04 partial differential equat & applicat, Tunis 2092, Tunisia
[2] Qassim Univ, Dept Math, Coll Sci, Buraydah 51452, Saudi Arabia
关键词
Inhomogeneous fractional Schro<spacing diaeresis>dinger problem; nonlinear equations; local theory;
D O I
10.3934/dcdss.2024069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proves the local existence of solutions to some inhomogeneous nonlinear equations of Schro<spacing diaeresis>dinger type with a fractional Laplacian in Sobolev spaces. Moreover, for small datum, the local solution extends to a global one. We give an elementary proof based on Strichartz estimates coupled with a fix point argument. In order to avoid a loss of regularity in Strichartz estimates, we consider radial data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SMALL DATA GLOBAL WELL-POSEDNESS FOR THE INHOMOGENEOUS BIHARMONIC NLS IN SOBOLEV SPACES
    An, Jinmyong
    Ryu, Pyongjo
    Kim, Jinmyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 2789 - 2802
  • [2] LOCAL WELL-POSEDNESS OF THE NLS EQUATION WITH THIRD ORDER DISPERSION IN NEGATIVE SOBOLEV SPACES
    Miyaji, Tomoyuki
    Tsutsumi, Yoshio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (1-2) : 111 - 132
  • [3] Local well-posedness for the inhomogeneous biharmonic nonlinear Schrodinger equation in Sobolev spaces
    An, JinMyong
    Kim, JinMyong
    Ryu, PyongJo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01): : 239 - 258
  • [4] GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    FORUM OF MATHEMATICS SIGMA, 2018, 6
  • [5] Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces
    Li, Jingna
    Xia, Li
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1074 - 1084
  • [6] WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES
    Zhou, Xuhuan
    Xiao, Weiliang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [7] Unconditional local well-posedness for periodic NLS
    Kishimoto, Nobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 766 - 787
  • [8] WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES
    Alexandre, R.
    Wang, Y. -G.
    Xu, C. -J.
    Yang, T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) : 745 - 784
  • [9] Well-posedness and scattering of inhomogeneous cubic-quintic NLS
    Cho, Yonggeun
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [10] Local well-posedness and ill-posedness for the fractal Burgers equation in homogeneous Sobolev spaces
    Xu, Xiaojing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 359 - 370