There are a wide range of variables which can influence the quality of the multifocal response. It is possible to place these variables into one of four categories. First, the method of stimulus delivery will determine the field of view, interference levels and the duration of on-state stimulation. Second, data acquisition variables such as electrode type and placement, amplifier specifications and filter bandwidth settings will have a direct impact on waveform shape and on the topographic distribution of signal amplitudes. Third, patient variables such as fixation, pupil dilation and refractive error will also contribute to the multifocal response. Fourth, there are many measurements that can be taken from multifocal recordings. In addition to standard amplitude and implicit time measures (the implicit time measure in the multifocal response is becoming increasingly important particularly in early stages of disease processes), the scalar product measure provides information on waveform shape. The conventional impulse and higher order responses will be different for different modes of stimulation such as Cathode Ray Tube (CRT) and Liquid Crystal Display (LCD) systems and latency shifts will be introduced if not corrected in software. Procedures which could lead to misleading interpretation include artefact rejection, averaging with neighbours and summing of responses. These procedures should be handled with caution.