The triterpenoid CDDO-imidazolide ameliorates mouse liver ischemia-reperfusion injury through activating the Nrf2/HO-1 pathway enhanced autophagy

被引:0
|
作者
Dongwei Xu
Lili Chen
Xiaosong Chen
Yankai Wen
Chang Yu
Jufang Yao
Hailong Wu
Xin Wang
Qiang Xia
Xiaoni Kong
机构
[1] Renji Hospital,Department of Liver Surgery
[2] School of Medicine,undefined
[3] Shanghai Jiao Tong University,undefined
[4] School of Biomedical Engineering and Med-X Research Institute,undefined
[5] Shanghai Jiao Tong University,undefined
[6] Animal Laboratory,undefined
[7] Renji Hospital,undefined
[8] School of Medicine,undefined
[9] Shanghai Jiao Tong University,undefined
[10] State Key Laboratory of Cell Biology,undefined
[11] CAS Center for Excellence in Molecular Cell Science,undefined
[12] Innovation Center for Cell Signaling Network,undefined
[13] Institute of Biochemistry and Cell Biology,undefined
[14] Shanghai Institutes for Biological Sciences,undefined
[15] Chinese Academy of Sciences,undefined
来源
Cell Death & Disease | 2017年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidants has been implicated to have protective roles in ischemia-reperfusion (I/R) injury in many animal models. However, the in vivo effects of CDDO-imidazole (CDDO-Im) (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole), a Nrf2 activator, in hepatic I/R injury is lacking and its exact molecular mechanisms are still not very clear. The goals of this study were to determine whether CDDO-Im can prevent liver injury induced by I/R in the mouse, and to elucidate the molecular target of drug action. Mice were randomly equally divided into two groups and administered intraperitoneally with either DMSO control or CDDO-Im (2 mg/kg) 3 h before subjected to 90-min hepatic 70% ischemia followed by reperfusion. Subsequently, the Liver and blood samples of these mice were collected to evaluate liver injury. CDDO-Im pretreatment markedly improve hepatic I/R injury by attenuating hepatic necrosis and apoptosis, reducing reactive oxygen species (ROS) levels and inflammatory responses, and ameliorating mitochondrial dysfunction. Mechanistically, by using Nrf2 Knockout mice and hemeoxygenase 1 (HO-1) inhibitor, we found that these CDDO-Im protection effects are attributed to enhanced autophagy, which is mediated by activating Nrf2/HO-1 pathway. By accelerating autophagy and clearance of damaged mitochondria, CDDO-Im reduced the mtDNA release and ROS overproduction, and in turn decreased damage-associated molecular patterns induced inflammatory responses and the following secondary liver injury. These results indicate that by enhancing autophagy, CDDO-Im-mediated activation of Nrf2/HO-1 signaling could be a novel therapeutic strategy to minimize the adverse effects of hepatic I/R injury.
引用
收藏
页码:e2983 / e2983
相关论文
共 50 条
  • [21] Normobaric hyperoxia plays a protective role against renal ischemia-reperfusion injury by activating the Nrf2/HO-1 signaling pathway
    Pei, Jun
    Cai, Shuyu
    Song, Shang
    Xu, Yuangao
    Feng, Mei
    Luo, Guangheng
    Wang, Yuanlin
    Sun, Fa
    Shi, Hua
    Xu, Shuxiong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 532 (01) : 151 - 158
  • [22] Sulforaphane alleviates lung ischemia-reperfusion injury through activating Nrf-2/HO-1 signaling
    Zhang, Liang
    Wang, Shuxian
    Zhang, Ying
    Li, Fenghuan
    Yu, Chaoxiao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2023, 25 (06)
  • [23] Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway
    Pan, Hong
    He, Meihua
    Liu, Ruixing
    Brecha, Nicholas C.
    Yu, Albert Cheung Hoi
    Pu, Mingliang
    PLOS ONE, 2014, 9 (12):
  • [24] Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway
    Zeng, Xiaofeng
    Li, Juan
    Li, Zhen
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (08): : 14497 - 14504
  • [25] FOXC2 Alleviates Myocardial Ischemia-Reperfusion Injury in Rats through Regulating Nrf2/HO-1 Signaling Pathway
    Wang, Rui
    Wu, Yonggang
    Jiang, Shoutao
    DISEASE MARKERS, 2021, 2021
  • [26] Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury
    Ge, Mian
    Yao, Weifeng
    Yuan, Dongdong
    Zhou, Shaoli
    Chen, Xi
    Zhang, Yihan
    Li, Haobo
    Xia, Zhengyuan
    Hei, Ziqing
    CELL DEATH & DISEASE, 2017, 8 : e2841 - e2841
  • [27] Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury
    Sun, Dan
    Cui, Shichao
    Ma, Haijian
    Zhu, Pengfei
    Li, Ni
    Zhang, Xinwen
    Zhang, Lina
    Xuan, Lijiang
    Li, Jingya
    JOURNAL OF ETHNOPHARMACOLOGY, 2022, 293
  • [28] Ulinastatin alleviates cerebral ischemia-reperfusion injury in rats by activating the Nrf-2/HO-1 signaling pathway
    Cui, Lei
    Cao, Wei
    Xia, Yanmin
    Li, Xiaofang
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (18)
  • [29] Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism
    Ding, Yi
    Chen, MinChun
    Wang, MingMing
    Li, Yuwen
    Wen, AiDong
    MOLECULAR NEUROBIOLOGY, 2015, 52 (03) : 1430 - 1439
  • [30] Hypothermic oxygenated perfusion ameliorates -ischemia-reperfusion injury of fatty liver in mice via Brg1/Nrf2/HO-1 axis
    Wang, Shengjie
    Zeng, Xianpeng
    Yang, Yunying
    Li, Shiyi
    Wang, Yanfeng
    Ye, Qifa
    Fan, Xiaoli
    ARTIFICIAL ORGANS, 2022, 46 (02) : 229 - 238