Rounding error analysis of the classical Gram-Schmidt orthogonalization process

被引:0
|
作者
Luc Giraud
Julien Langou
Miroslav Rozložník
Jasper van den Eshof
机构
[1] CERFACS,Department of Computer Science
[2] The University of Tennessee,Institute of Computer Science
[3] Academy of Sciences of the Czech Republic,Heinrich
[4] Mathematisches Institut,Heine
来源
Numerische Mathematik | 2005年 / 101卷
关键词
65F25; 65G50; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
This paper provides two results on the numerical behavior of the classical Gram-Schmidt algorithm. The first result states that, provided the normal equations associated with the initial vectors are numerically nonsingular, the loss of orthogonality of the vectors computed by the classical Gram-Schmidt algorithm depends quadratically on the condition number of the initial vectors. The second result states that, provided the initial set of vectors has numerical full rank, two iterations of the classical Gram-Schmidt algorithm are enough for ensuring the orthogonality of the computed vectors to be close to the unit roundoff level.
引用
收藏
页码:87 / 100
页数:13
相关论文
共 50 条
  • [31] SOLVING THE KRIGING PROBLEM BY USING THE GRAM-SCHMIDT ORTHOGONALIZATION
    KACEWICZ, M
    [J]. MATHEMATICAL GEOLOGY, 1991, 23 (01): : 111 - 118
  • [32] Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
    Ondrej Slučiak
    Hana Straková
    Markus Rupp
    Wilfried Gansterer
    [J]. EURASIP Journal on Advances in Signal Processing, 2016
  • [33] A generalization of Gram-Schmidt orthogonalization generating all Parseval frames
    Casazza, Peter G.
    Kutyniok, Gitta
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (01) : 65 - 78
  • [34] Reorthogonalized block classical Gram-Schmidt
    Barlow, Jesse L.
    Smoktunowicz, Alicja
    [J]. NUMERISCHE MATHEMATIK, 2013, 123 (03) : 395 - 423
  • [35] New partitioning schemes for parallel modified Gram-Schmidt orthogonalization
    Oliveira, S
    Soma, T
    [J]. THIRD INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS, PROCEEDINGS (I-SPAN '97), 1997, : 233 - 239
  • [36] A Fast Adaptive Beamforming Algorithm Based on Gram-Schmidt Orthogonalization
    Qian, Bing-Feng
    Gao, Shi-Jie
    Li, Quan-Feng
    Zhang, Qian
    Wang, Ye
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (04) : 642 - 650
  • [37] Waveform design for distributed aperture using gram-schmidt orthogonalization
    Yarman, Can Evren
    Varslot, Trond
    Yazici, Birsen
    Cheney, Margaret
    [J]. 2007 INTERNATIONAL WAVEFORM DIVERSITY & DESIGN CONFERENCE, 2007, : 111 - +
  • [38] FPGA-BASED NORMALIZATION FOR MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION
    Sajid, I.
    Ziavras, Sotirios G.
    Ahmed, M. M.
    [J]. VISAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2010, : 227 - 232
  • [40] Group endmember extraction algorithm based on Gram-Schmidt orthogonalization
    Zhao, Yan
    Zhou, Zhen
    Wang, Donghui
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02):