Incorporation of active phase in porous MoS2 for enhanced hydrogen evolution reaction

被引:0
|
作者
Wen Qiao
Tiantian Ma
Xiaoyong Xu
Liqian Wu
Shiming Yan
Dunhui Wang
机构
[1] Hangzhou Dianzi University,School of Electronics and Information
[2] Henan University of Technology,College of Science
[3] Yangzhou University,School of Physics Science and Technology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molybdenum disulfide (MoS2) has been considered to be a promising electrocatalyst for hydrogen evolution reaction (HER). Incorporation of 1 T phase is a strategy to allow basal planes of MoS2 nanosheets simultaneously possess highly active catalytic sites and metallic property. This strategy requires as many basal planes as possible to be exposed to the surface, thus enabling the active sites on the basal planes to participate in the catalytic reaction. Herein, we report a porous ultra-thin 1 T phase MoS2 (1 T-MoS2) nanosheets prepared by a SiO2 nanospheres template method. Ultra-thin MoS2 nanosheets grow laterally around the surface of SiO2 nanospheres. After etching SiO2, the rest porous ultra-thin MoS2 nanosheets ensure the maximized exposure of basal plane active sites. In addition, the metallic porous structure can also facilitate transport of mass in holes and transfer of electron on basal planes. The synergistic effect of these aspects endows our sample with improved hydrogen evolution capability. The onset overpotential at 1 mA/cm2 is 131 mV, and the corresponding Tafel slope is 63 mV/dec.
引用
收藏
页码:4121 / 4128
页数:7
相关论文
共 50 条
  • [11] Insertion of Platinum Nanoparticles into MoS2 Nanoflakes for Enhanced Hydrogen Evolution Reaction
    Li, Dan
    Li, Yang
    Zhang, Bowei
    Lui, Yu Hui
    Mooni, Sivaprasad
    Chen, Rongsheng
    Hu, Shan
    Ni, Hongwei
    MATERIALS, 2018, 11 (09)
  • [12] Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets
    He, Mengci
    Kong, Fanpeng
    Yin, Geping
    Lv, Zhe
    Sun, Xiudong
    Shi, Hongyan
    Gao, Bo
    RSC ADVANCES, 2018, 8 (26): : 14369 - 14376
  • [13] Modulating MoS2 nanostructure by vanadium incorporation for high-efficiency hydrogen evolution reaction
    Fan, Hailu
    Cao, Kuo
    Ba, Jinxiao
    Cheng, Hui
    Yu, Xianghai
    Song, Aiying
    Xu, Chengqun
    Wang, Yihua
    Fan, Donghua
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 294
  • [14] MoS2 Moire Superlattice for Hydrogen Evolution Reaction
    Jiang, Zhenzhen
    Zhou, Wenda
    Hong, Aijun
    Guo, Manman
    Luo, Xingfang
    Yuan, Cailei
    ACS ENERGY LETTERS, 2019, 4 (12) : 2830 - 2835
  • [15] Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping
    Chen, Xing
    Sun, Jinxin
    Guan, Junming
    Ji, Jie
    Zhou, Min
    Meng, Lijuan
    Chen, Ming
    Zhou, Wenqi
    Liu, Yongjun
    Zhang, Xiuyun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23191 - 23200
  • [16] Defect and strain engineered MoS2/graphene catalyst for an enhanced hydrogen evolution reaction
    Yang, Zhaoyuan
    Zhu, Jia
    Xu, Xianglan
    Wang, Lei
    Zhou, Guobing
    Yang, Zhen
    Zhang, Yongfan
    RSC ADVANCES, 2023, 13 (06) : 4056 - 4064
  • [17] Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction
    Geng, Shuo
    Yang, Weiwei
    Liu, Yequn
    Yu, Yongsheng
    JOURNAL OF CATALYSIS, 2020, 391 (391) : 91 - 97
  • [18] Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction
    Vikraman, Dhanasekaran
    Hussain, Sajjad
    Truong, Linh
    Karuppasamy, K.
    Kim, Hyun-Jung
    Maiyalagan, T.
    Chun, Seung-Hyun
    Jung, Jongwan
    Kim, Hyun-Seok
    APPLIED SURFACE SCIENCE, 2019, 480 : 611 - 620
  • [19] Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction
    Huang, Teng-Xiang
    Cong, Xin
    Wu, Si-Si
    Wu, Jiang-Bin
    Bao, Yi-Fan
    Cao, Mao-Feng
    Wu, Liwen
    Lin, Miao-Ling
    Wang, Xiang
    Tan, Ping-Heng
    Ren, Bin
    NATURE CATALYSIS, 2024, 7 (06) : 646 - 654
  • [20] Metallic-Phase MoS2 Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution
    Wang, Jing
    Wang, Nan
    Guo, Yanzhen
    Yang, Jianhua
    Wang, Jianfang
    Wang, Fang
    Sun, Jie
    Xu, Hua
    Liu, Zong-Huai
    Jiang, Ruibin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10): : 13435 - 13442