Discovery of shared genomic loci using the conditional false discovery rate approach

被引:0
|
作者
Olav B. Smeland
Oleksandr Frei
Alexey Shadrin
Kevin O’Connell
Chun-Chieh Fan
Shahram Bahrami
Dominic Holland
Srdjan Djurovic
Wesley K. Thompson
Anders M. Dale
Ole A. Andreassen
机构
[1] University of Oslo,NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine
[2] University of California San Diego,Department of Cognitive Science
[3] University of California of San Diego,Department of Radiology
[4] University of California San Diego,Department of Family Medicine and Public Health
[5] University of California San Diego,Department of Neuroscience
[6] University of California San Diego,Center for Multimodal Imaging and Genetics
[7] Oslo University Hospital,Department of Medical Genetics
[8] University of Bergen,NORMENT Centre, Department of Clinical Science
来源
Human Genetics | 2020年 / 139卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antagonistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights into the genetic relationship between complex phenotypes.
引用
收藏
页码:85 / 94
页数:9
相关论文
共 50 条
  • [41] Estimating the false discovery rate using the stochastic approximation algorithm
    Liang, Faming
    Zhang, Jian
    BIOMETRIKA, 2008, 95 (04) : 961 - 977
  • [42] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [43] A False Discovery Rate approach to optimal volatility forecasting model selection☆
    Hassanniakalager, Arman
    Baker, Paul L.
    Platanakis, Emmanouil
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (03) : 881 - 902
  • [44] A direct approach to false discovery rates
    Storey, JD
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 479 - 498
  • [45] Scan clustering: A false discovery approach
    Pacificoa, M. Perone
    Genovese, C.
    Verdinelli, I.
    Wasserman, L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (07) : 1441 - 1469
  • [46] Estimating false discovery rate and false non-discovery rate using the empirical cumulative distribution function of p-values in ‘omics’ studies
    Robert R. Delongchamp
    Mehdi Razzaghi
    Taewon Lee
    Genes & Genomics, 2011, 33 : 461 - 466
  • [47] Association analyses based on false discovery rate implicate new loci for coronary artery disease
    Christopher P Nelson
    Anuj Goel
    Adam S Butterworth
    Stavroula Kanoni
    Tom R Webb
    Eirini Marouli
    Lingyao Zeng
    Ioanna Ntalla
    Florence Y Lai
    Jemma C Hopewell
    Olga Giannakopoulou
    Tao Jiang
    Stephen E Hamby
    Emanuele Di Angelantonio
    Themistocles L Assimes
    Erwin P Bottinger
    John C Chambers
    Robert Clarke
    Colin N A Palmer
    Richard M Cubbon
    Patrick Ellinor
    Raili Ermel
    Evangelos Evangelou
    Paul W Franks
    Christopher Grace
    Dongfeng Gu
    Aroon D Hingorani
    Joanna M M Howson
    Erik Ingelsson
    Adnan Kastrati
    Thorsten Kessler
    Theodosios Kyriakou
    Terho Lehtimäki
    Xiangfeng Lu
    Yingchang Lu
    Winfried März
    Ruth McPherson
    Andres Metspalu
    Mar Pujades-Rodriguez
    Arno Ruusalepp
    Eric E Schadt
    Amand F Schmidt
    Michael J Sweeting
    Pierre A Zalloua
    Kamal AlGhalayini
    Bernard D Keavney
    Jaspal S Kooner
    Ruth J F Loos
    Riyaz S Patel
    Martin K Rutter
    Nature Genetics, 2017, 49 : 1385 - 1391
  • [48] Estimating false discovery rate and false non-discovery rate using the empirical cumulative distribution function of p-values in 'omics' studies
    Delongchamp, Robert R.
    Razzaghi, Mehdi
    Lee, Taewon
    GENES & GENOMICS, 2011, 33 (05) : 461 - 466
  • [49] Association analyses based on false discovery rate implicate new loci for coronary artery disease
    Nelson, Christopher P.
    Goel, Anuj
    Butterworth, Adam S.
    Kanoni, Stavroula
    Webb, Tom R.
    Marouli, Eirini
    Zeng, Lingyao
    Ntalla, Ioanna
    Lai, Florence Y.
    Hopewell, Jemma C.
    Giannakopoulou, Olga
    Jiang, Tao
    Hamby, Stephen E.
    Di Angelantonio, Emanuele
    Assimes, Themistocles L.
    Bottinger, Erwin P.
    Chambers, John C.
    Clarke, Robert
    Palmer, Colin N. A.
    Cubbon, Richard M.
    Ellinor, Patrick
    Ermel, Raili
    Evangelou, Evangelos
    Franks, Paul W.
    Grace, Christopher
    Gu, Dongfeng
    Hingorani, Aroon D.
    Howson, Joanna M. M.
    Ingelsson, Erik
    Kastrati, Adnan
    Kessler, Thorsten
    Kyriakou, Theodosios
    Lehtimaki, Terho
    Lu, Xiangfeng
    Lu, Yingchang
    Maerz, Winfried
    McPherson, Ruth
    Metspalu, Andres
    Pujades-Rodriguez, Mar
    Ruusalepp, Arno
    Schadt, Eric E.
    Schmidt, Amand F.
    Sweeting, Michael J.
    Zalloua, Pierre A.
    AlGhalayini, Kamal
    Keavney, Bernard D.
    Kooner, Jaspal S.
    Loos, Ruth J. F.
    Patel, Riyaz S.
    Rutter, Martin K.
    NATURE GENETICS, 2017, 49 (09) : 1385 - +
  • [50] False discovery rate: setting the probability of false claim of detection
    Baggio, L
    Prodi, GA
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (18) : S1373 - S1379