SUMOylation regulates telomere length homeostasis by targeting Cdc13

被引:0
|
作者
Lisa E Hang
Xianpeng Liu
Iris Cheung
Yan Yang
Xiaolan Zhao
机构
[1] Molecular Biology Program,Department of Molecular Biology
[2] Memorial Sloan Kettering Cancer Center,undefined
[3] Programs in Biochemistry,undefined
[4] Cell and Molecular Biology,undefined
[5] Weill Graduate School of Medical Sciences,undefined
[6] Cornell University,undefined
[7] Princeton University,undefined
[8] Present addresses: Department of Biochemistry and Molecular Biology,undefined
[9] Louisiana State University,undefined
[10] Health Sciences Center,undefined
[11] Shreveport,undefined
[12] Louisiana,undefined
[13] USA (X.L.); Eurofins MWG Operon,undefined
[14] Huntsville,undefined
[15] Alabama,undefined
[16] USA (I.C.); New York University Medical School,undefined
[17] New York,undefined
[18] New York,undefined
[19] USA (Y.Y.).,undefined
来源
Nature Structural & Molecular Biology | 2011年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cdc13 forms a complex with Stn1-Ten1 that caps budding yeast telomeres; Cdc13 also recruits the telomerase complex. Indeed, Cdk1 phosphorylates Cdc13 and this favors the Cdc13- Est1p, at the expense of Cdc13 association with Stn1, which inhibits telomerase action at telomeres. Now a second, independent mechanism to control Cdc13-Stn1 interaction is revealed: sumoylation of Cdc13 promotes its interaction with Stn1 and prevents telomerase activity.
引用
收藏
页码:920 / 926
页数:6
相关论文
共 50 条
  • [31] Cdk1-Dependent Phosphorylation of Cdc13 Coordinates Telomere Elongation during Cell-Cycle Progression
    Li, Shang
    Makovets, Svetlana
    Matsuguchi, Tetsuya
    Blethrow, Justin D.
    Shokat, Kevan M.
    Blackburn, Elizabeth H.
    CELL, 2009, 136 (01) : 50 - 61
  • [32] De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks
    Zhang, Wei
    Durocher, Daniel
    GENES & DEVELOPMENT, 2010, 24 (05) : 502 - 515
  • [33] Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13
    Obodo, Udochukwu C.
    Epum, Esther A.
    Platts, Margaret H.
    Seloff, Jacob
    Dahlson, Nicole A.
    Velkovsky, Stoycho M.
    Paul, Shira R.
    Friedman, Katherine L.
    MOLECULAR AND CELLULAR BIOLOGY, 2016, 36 (12) : 1750 - 1763
  • [34] Cdc13 OB2 Dimerization Required for Productive Stn1 Binding and Efficient Telomere Maintenance
    Mason, Mark
    Wanat, Jennifer J.
    Harper, Sandy
    Schultz, David C.
    Speicher, David W.
    Johnson, F. Brad
    Skordalakes, Emmanuel
    STRUCTURE, 2013, 21 (01) : 109 - 120
  • [35] The Telomeric Cdc13 Protein from Yeast Hansenula polymorpha
    Malyavko, A. N.
    Dontsova, O. A.
    ACTA NATURAE, 2020, 12 (01): : 84 - 88
  • [36] Renaturation and stabilization of the telomere-binding activity of Saccharomyces Cdc13(451-693)p by L-arginine
    Lin, YC
    Shih, JW
    Hsu, CL
    Lin, JJ
    ANALYTICAL BIOCHEMISTRY, 2001, 294 (01) : 44 - 47
  • [37] Est1 and Cdc13 as comediators of telomerase access
    Evans, SK
    Lundblad, V
    SCIENCE, 1999, 286 (5437) : 117 - 120
  • [38] Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends
    Hirano, Yukinori
    Sugimoto, Katsunori
    MOLECULAR BIOLOGY OF THE CELL, 2007, 18 (06) : 2026 - 2036
  • [39] Prediction of multiple tandem OB-fold domains in telomere end-binding proteins Pot1 and Cdc13
    Theobald, DL
    Wuttke, DS
    STRUCTURE, 2004, 12 (10) : 1877 - 1879
  • [40] Chromosome end protection and telomere length maintenance cdc13-1 strains.
    Azaizeh, W.
    Lorquet, J.
    Edwards, K.
    Hengartner, C. J.
    Vega, L. R.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25