Truly Nonlinear Oscillator with Limit Cycles and Harmonic Solutions

被引:0
|
作者
Adjaï K.K.D. [1 ]
Akande J. [1 ]
Nonti M. [1 ]
Monsia M.D. [1 ]
机构
[1] Department of Physics, University of Abomey-Calavi, 01.BP.526, Abomey-Calavi, Cotonou
关键词
Algebraic limit cycles; Exact harmonic and isochronous solution; Polynomial differential systems; Truly nonlinear equations;
D O I
10.1007/s40819-023-01488-5
中图分类号
学科分类号
摘要
This paper presents some classes of truly nonlinear oscillatory equations of polynomial type. It has been shown that these classes can generate many conservative systems with exact harmonic and isochronous solutions and self-sustained systems with exact algebraic limit cycles. © 2023, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
下载
收藏
相关论文
共 50 条
  • [31] Instanton solutions on the polymer harmonic oscillator
    Austrich-Olivares, Joan A.
    Garcia-Chung, Angel
    David Vergara, J.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (11)
  • [32] Limit cycles and bifurcations in nonlinear oscillatory
    Corinto, Fernando
    Lanza, Valentina
    Gilli, Marco
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 3163 - +
  • [33] Bifurcations and limit cycles in a model for a vocal fold oscillator
    Lucero, JC
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2005, 3 (04) : 517 - 529
  • [34] Analytical solutions of a generalized Duffing-harmonic oscillator by a nonlinear time transformation method
    Wang, Hailing
    Chung, Kwok-wai
    PHYSICS LETTERS A, 2012, 376 (12-13) : 1118 - 1124
  • [35] The stability of limit cycles in nonlinear systems
    Ali Ghaffari
    Masayoshi Tomizuka
    Reza A. Soltan
    Nonlinear Dynamics, 2009, 56 : 269 - 275
  • [36] LIMIT CYCLES OF A DOUBLE OSCILLATOR EXCITED BY DRY FRICTION
    Stepanov, Sergey
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (10): : 3043 - 3046
  • [37] Design of Complex Oscillator Network with Multiple Limit Cycles
    Ren, Kewei
    Iwasaki, Tetsuya
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 115 - 120
  • [38] ON TRULY NONLINEAR OSCILLATOR EQUATIONS OF ERMAKOV-PINNEY TYPE
    Nonti, Marcellin
    Adjai, Kolawole Kegnide Damien
    Akande, Jean
    Monsia, Marc Delphin
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (06): : 970 - 983
  • [39] The stability of limit cycles in nonlinear systems
    Ghaffari, Ali
    Tomizuka, Masayoshi
    Soltan, Reza A.
    NONLINEAR DYNAMICS, 2009, 56 (03) : 269 - 275
  • [40] SZEGO LIMIT-THEOREMS FOR THE HARMONIC-OSCILLATOR
    JANSSEN, AJEM
    ZELDITCH, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (02) : 563 - 587