Truly Nonlinear Oscillator with Limit Cycles and Harmonic Solutions

被引:0
|
作者
Adjaï K.K.D. [1 ]
Akande J. [1 ]
Nonti M. [1 ]
Monsia M.D. [1 ]
机构
[1] Department of Physics, University of Abomey-Calavi, 01.BP.526, Abomey-Calavi, Cotonou
关键词
Algebraic limit cycles; Exact harmonic and isochronous solution; Polynomial differential systems; Truly nonlinear equations;
D O I
10.1007/s40819-023-01488-5
中图分类号
学科分类号
摘要
This paper presents some classes of truly nonlinear oscillatory equations of polynomial type. It has been shown that these classes can generate many conservative systems with exact harmonic and isochronous solutions and self-sustained systems with exact algebraic limit cycles. © 2023, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
下载
收藏
相关论文
共 50 条
  • [2] The number of limit cycles due to polynomial perturbations of the harmonic oscillator
    Iliev, ID
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 317 - 322
  • [3] On the existence of limit cycles of the perturbed harmonic oscillator in the degenerate case
    Leonov, GA
    Timochouk, LA
    Vavilov, SA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 593 - 594
  • [4] Calculation of analytic approximations to the periodic solutions of a "truly nonlinear" oscillator equation
    Mickens, Ronald E.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 781 - 784
  • [5] Harmonic balance approach to limit cycles for nonlinear jerk equations
    Gottlieb, H. P. W.
    JOURNAL OF SOUND AND VIBRATION, 2006, 297 (1-2) : 243 - 250
  • [6] Boundedness of solutions and existence of limit cycles for a nonlinear system
    Jiang, K
    Han, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (12) : 1995 - 2006
  • [7] Limit cycles in a MEMS oscillator
    Teplinsky, Alexey
    Feely, Orla
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (09) : 882 - 886
  • [8] Exact and approximate solutions for the anti-symmetric quadratic truly nonlinear oscillator
    Belendez, A.
    Arribas, E.
    Pascual, C.
    Belendez, T.
    Alvarez, M. L.
    Hernandez, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 355 - 364
  • [9] Analytical Solutions for Limit Cycles of the Forced Van Der Pol Duffing Oscillator
    Shukla, Anant Kant
    Ramamohan, T. R.
    Srinivas, S.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2187 - 2192
  • [10] LIMIT-CYCLES IN AN ELASTOPLASTIC OSCILLATOR
    PRATAP, R
    MUKHERJEE, S
    MOON, FC
    PHYSICS LETTERS A, 1992, 170 (05) : 384 - 392