A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
|
作者
Norio Konno
Kaname Matsue
Etsuo Segawa
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
[2] Kyushu University,Institute of Mathematics for Industry
[3] Kyushu University,International Institute for Carbon
[4] Yokohama National University,Neutral Energy Research (WPI
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in {{\mathbb {N}}}$$\end{document} controlling a decoherence effect; if M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document}, the walk coincides with an open quantum random walk, while M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document}, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document} for M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document} and M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document} and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document}, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato’s perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
相关论文
共 50 条
  • [41] On the equivalence between quantum and random walks on finite graphs
    Andrade, Matheus G.
    Marquezino, Franklin De Lima
    Figueiredo, Daniel R.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [42] Open Quantum Random Walks: Reducibility, Period, Ergodic Properties
    Carbone, Raffaella
    Pautrat, Yan
    ANNALES HENRI POINCARE, 2016, 17 (01): : 99 - 135
  • [43] An Example of the Difference Between Quantum and Classical Random Walks
    Childs, Andrew M.
    Farhi, Edward
    Gutmann, Sam
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 35 - 43
  • [44] On the equivalence between quantum and random walks on finite graphs
    Matheus G. Andrade
    Franklin de Lima Marquezino
    Daniel R. Figueiredo
    Quantum Information Processing, 2020, 19
  • [45] Quantum walks induced by Dirichlet random walks on infinite trees
    Higuchi, Yusuke
    Segawa, Etsuo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (07)
  • [46] OPEN QUANTUM RANDOM WALKS AND THE MEAN HITTING TIME FORMULA
    Lardizabal, Carlos F.
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (1-2) : 79 - 105
  • [47] Open Quantum Random Walks: Reducibility, Period, Ergodic Properties
    Raffaella Carbone
    Yan Pautrat
    Annales Henri Poincaré, 2016, 17 : 99 - 135
  • [49] Controllability of system dynamics on networks, quantum walks and random walks
    D'Alessandro, Domenico
    Olmez, Sevim
    AUTOMATICA, 2013, 49 (05) : 1358 - 1364
  • [50] Random Walks on Finite Quantum Groups
    Isabelle Baraquin
    Journal of Theoretical Probability, 2020, 33 : 1715 - 1736