The semi-rational solutions of the (2+1)-dimensional cmKdV equations

被引:0
|
作者
Feng Yuan
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
The (; )-D cmKdV equations; Semi-rational solution; Line rogue wave solution; Lump; Breather; Line periodic wave; Darboux transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document})-D complex modified Korteweg–de Vries (cmKdV) equations are investigated with the aid of the Darboux transformation method. Through the limits λ2k-1→λ0=-a2+ci(k=1,…,m,m⩽n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2k-1}\rightarrow \lambda _0=-\frac{a}{2}+ci\,(k=1,\ldots ,m,\,m\leqslant n-1)$$\end{document}, the order-n semi-rational solutions are obtained. The order-2 semi-rational solutions and order-3 semi-rational solutions are analyzed in detail. By changing different parameters lj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_j$$\end{document}, different semi-rational solutions are deduced, including rogue wave interaction with the periodic wave or breather and lump interaction with the periodic wave or breather. The dynamical properties of these solutions are discussed, which indicates that these interactions are elastic collisions. In terms of application, these semi-rational solutions will be valuable in modeling physical problems.
引用
收藏
页码:733 / 744
页数:11
相关论文
共 50 条
  • [31] Rational and semi-rational solutions for a (3+1)-dimensional generalized KP-Boussinesq equation in shallow water wave
    Li, Lingfei
    Yan, Yongsheng
    Xie, Yingying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 777 - 797
  • [32] Rational solutions and interaction solutions for (2+1)-dimensional nonlocal Schrodinger equation*
    Chen, Mi
    Wang, Zhen
    CHINESE PHYSICS B, 2020, 29 (12)
  • [33] Rational and semi-rational solutions to the Davey-Stewartson III equation
    Wang, Sheng-Nan
    Yu, Guo-Fu
    NONLINEAR DYNAMICS, 2023, 111 (08) : 7635 - 7655
  • [34] Rational and semi-rational solutions for the (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation
    Deng, Ya-Si
    Tian, Bo
    Sun, Yan
    Zhang, Chen-Rong
    Hu, Cong-Cong
    MODERN PHYSICS LETTERS B, 2019, 33 (25):
  • [35] Rational and semi-rational solutions of the Kadomtsev-Petviashvili-based system
    Zhang, Yongshuai
    Rao, Jiguang
    Porsezian, K.
    He, Jingsong
    NONLINEAR DYNAMICS, 2019, 95 (02) : 1133 - 1146
  • [36] Rational and semi-rational solutions of the Kadomtsev–Petviashvili-based system
    Yongshuai Zhang
    Jiguang Rao
    K. Porsezian
    Jingsong He
    Nonlinear Dynamics, 2019, 95 : 1133 - 1146
  • [37] New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Ito Equations
    Bhrawy, A. H.
    Alhuthali, M. Sh.
    Abdelkawy, M. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [38] Rational solutions of a (2+1)-dimensional sinh-Gordon equation
    Sheng, Han-Han
    Yu, Guo-Fu
    APPLIED MATHEMATICS LETTERS, 2020, 101
  • [39] Rational solutions of the (2+1)-dimensional Kaup-Kupershmidt equation
    Chen, Junchao
    Hu, Xueli
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 150 - 157
  • [40] High-order semi-rational solutions of the coupled nonlinear Schrodinger equations with variable coefficients
    Cui, Haoguang
    Shan, Wenrui
    Li, Qianqian
    Cui, Wangxi
    MODERN PHYSICS LETTERS B, 2023, 37 (07):