The semi-rational solutions of the (2+1)-dimensional cmKdV equations

被引:0
|
作者
Feng Yuan
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
The (; )-D cmKdV equations; Semi-rational solution; Line rogue wave solution; Lump; Breather; Line periodic wave; Darboux transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document})-D complex modified Korteweg–de Vries (cmKdV) equations are investigated with the aid of the Darboux transformation method. Through the limits λ2k-1→λ0=-a2+ci(k=1,…,m,m⩽n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2k-1}\rightarrow \lambda _0=-\frac{a}{2}+ci\,(k=1,\ldots ,m,\,m\leqslant n-1)$$\end{document}, the order-n semi-rational solutions are obtained. The order-2 semi-rational solutions and order-3 semi-rational solutions are analyzed in detail. By changing different parameters lj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_j$$\end{document}, different semi-rational solutions are deduced, including rogue wave interaction with the periodic wave or breather and lump interaction with the periodic wave or breather. The dynamical properties of these solutions are discussed, which indicates that these interactions are elastic collisions. In terms of application, these semi-rational solutions will be valuable in modeling physical problems.
引用
收藏
页码:733 / 744
页数:11
相关论文
共 50 条
  • [1] The semi-rational solutions of the (2+1)-dimensional cmKdV equations
    Yuan, Feng
    NONLINEAR DYNAMICS, 2023, 111 (01) : 733 - 744
  • [2] Rational solutions of the (2+1)-dimensional cmKdV equations
    Yuan, Feng
    MODERN PHYSICS LETTERS B, 2021, 35 (32):
  • [3] Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas system
    Cao, Yulei
    Rao, Jiguang
    Mihalache, Dumitru
    He, Jingsong
    APPLIED MATHEMATICS LETTERS, 2018, 80 : 27 - 34
  • [4] Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrodinger equation
    Peng, Wei-Qi
    Tian, Shou-Fu
    Zhang, Tian-Tian
    Fang, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6865 - 6877
  • [5] Two (2+1)-dimensional integrable nonlocal nonlinear Schrodinger equations: Breather, rational and semi-rational solutions
    Cao, Yulei
    Malomed, Boris A.
    He, Jingsong
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 99 - 107
  • [6] Rational and Semi-Rational Solutions to the (2
    Zhang, Yong
    Dong, Huan-He
    Fang, Yong
    AXIOMS, 2022, 11 (09)
  • [7] Rational and semi-rational solutions of the modified Kadomtsev-Petviashvili equation and the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Huang, Shuting
    Wu, Chengfa
    Qi, Cheng
    NONLINEAR DYNAMICS, 2019, 97 (04) : 2829 - 2841
  • [8] The order-n breather and degenerate breather solutions of the (2+1)-dimensional cmKdV equations
    Yuan, Feng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (04):
  • [9] High-order breathers and semi-rational solutions of the (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation
    Zheng, Mengqi
    Li, Maohua
    MODERN PHYSICS LETTERS B, 2021, 35 (26):
  • [10] Semi-rational solutions for a <alternatives>(2+1)-dimensional Davey-Stewartson system on the surface water waves of finite depth
    Sun, Yan
    Tian, Bo
    Yuan, Yu-Qiang
    Du, Zhong
    NONLINEAR DYNAMICS, 2018, 94 (04) : 3029 - 3040