DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression

被引:32
|
作者
Dorman C.J. [1 ]
Dorman M.J. [2 ,3 ]
机构
[1] Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin
[2] Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin
[3] Wellcome Trust Sanger Institute, Hinxton, Cambridge
基金
爱尔兰科学基金会;
关键词
DNA supercoiling; DNA topoisomerases; Gene regulation; Transcription;
D O I
10.1007/s12551-016-0238-2
中图分类号
学科分类号
摘要
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria. © 2016, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:89 / 100
页数:11
相关论文
共 50 条
  • [31] Regulatory states in the developmental control of gene expression
    Peter, Isabelle S.
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (05) : 281 - 287
  • [32] An improved assay for the detection of alterations in bacterial DNA supercoiling in vivo
    Abu Mraheil, M.
    Heisig, A.
    Heisig, P.
    PHARMAZIE, 2013, 68 (07): : 541 - 548
  • [33] DNA methylation as a regulatory mechanism for gene expression in mammals
    Serman, Alan
    Vlahovic, Maja
    Serman, Ljiljana
    Bulic-Jakus, Floriana
    COLLEGIUM ANTROPOLOGICUM, 2006, 30 (03) : 665 - 671
  • [34] Learning the regulatory grammar of DNA for gene expression engineering
    Zrimec, Jan
    Zelezniak, Aleksej
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [35] THE EXPRESSION OF THE DNA-LIGASE GENE OF ESCHERICHIA-COLI IS STIMULATED BY RELAXATION OF CHROMOSOMAL SUPERCOILING
    LIEBART, JC
    PAOLOZZI, L
    CAMERA, MG
    PEDRINI, AM
    GHELARDINI, P
    MOLECULAR MICROBIOLOGY, 1989, 3 (03) : 269 - 273
  • [36] DNA SUPERCOILING AND ENVIRONMENTAL-REGULATION OF VIRULENCE GENE-EXPRESSION IN SHIGELLA-FLEXNERI
    DORMAN, CJ
    BHRIAIN, NN
    HIGGINS, CF
    NATURE, 1990, 344 (6268) : 789 - 792
  • [37] Gene regulatory systems that control gene expression in the Ciona embryo
    Satou, Yutaka
    Imai, Kaoru S.
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2015, 91 (02): : 33 - 51
  • [38] OSMOTIC REGULATION OF PORIN EXPRESSION - A ROLE FOR DNA SUPERCOILING
    GRAEMECOOK, KA
    MAY, G
    BREMER, E
    HIGGINS, CF
    MOLECULAR MICROBIOLOGY, 1989, 3 (09) : 1287 - 1294
  • [39] DNA supercoiling-dependent gene regulation in Chlamydia
    Niehus, Eike
    Cheng, Eric
    Tan, Ming
    JOURNAL OF BACTERIOLOGY, 2008, 190 (19) : 6419 - 6427
  • [40] POSITIVE AND NEGATIVE CONTROL OF BACTERIAL GENE EXPRESSION
    CLARKE, PH
    SCIENCE PROGRESS, 1972, 60 (238) : 245 - +