Bubble accumulations in an elliptic Neumann problem with critical Sobolev exponent

被引:0
|
作者
Changshou Lin
Liping Wang
Juncheng Wei
机构
[1] National Chung Cheng University,Department of Mathematics
[2] Chinese University of Hong Kong,Department of Mathematics
关键词
Primary: 35B40; 35J20; Secondary: 35J55; 92C15; 92C40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following critical elliptic Neumann problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${- \Delta u+\mu u=u^{\frac{N+2}{N-2}}, u > 0 in \Omega; \frac{\partial u}{\partial n}=0}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial\Omega;}$$\end{document} , Ω; being a smooth bounded domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}, N\geq 7, \mu > 0}$$\end{document} is a large number. We show that at a positive nondegenerate local minimum point Q0 of the mean curvature (we may assume that Q0 = 0 and the unit normal at Q0 is − eN) for any fixed integer K ≥ 2, there exists a μK > 0 such that for μ > μK, the above problem has K−bubble solution uμ concentrating at the same point Q0. More precisely, we show that uμ has K local maximum points Q1μ, ... , QKμ ∈∂Ω with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{\mu} (Q_j^\mu) \sim \mu^{\frac{N-2}{2}}, Q_j^\mu \to Q_0, j=1,\ldots , K,}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mu^{\frac{N-3}{N}} ((Q_1^{\mu})^{'}, \ldots , (Q_K^{\mu})^{'}) }$$\end{document} approach an optimal configuration of the following functional
引用
收藏
页码:153 / 182
页数:29
相关论文
共 50 条
  • [41] Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity
    Wei, Juncheng
    Yan, Shusen
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (05) : 311 - 316
  • [42] Existence of solutions for elliptic systems with critical Sobolev exponent
    Amster, Pablo
    De Napoli, Pablo
    Mariani, Maria Cristina
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [43] On singular elliptic equations involving critical Sobolev exponent
    Tahri, K.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [44] On Elliptic System Involving Critical Sobolev Exponent and Weights
    Bouchekif, Mohammed
    Hamzaoui, Yamina
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 497 - 517
  • [45] A Note on Elliptic Equations Involving the Critical Sobolev Exponent
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 311 - 319
  • [46] On Elliptic System Involving Critical Sobolev Exponent and Weights
    Mohammed Bouchekif
    Yamina Hamzaoui
    Mediterranean Journal of Mathematics, 2014, 11 : 497 - 517
  • [47] ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT
    BAHRI, A
    CORON, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (07): : 345 - 348
  • [48] Existence of solutions for elliptic equation with critical Sobolev exponent
    Xiu, Zonghu
    MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 1205 - 1208
  • [50] Dynamical boundary problem for Dirichlet-to-Neumann operator with critical Sobolev exponent and Hardy potential
    Deng, Yanhua
    Tan, Zhong
    Xie, Minghong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62 (62)