Control theorems for fine Selmer groups, and duality of fine Selmer groups attached to modular forms

被引:0
|
作者
Jeffrey Hatley
Debanjana Kundu
Antonio Lei
Jishnu Ray
机构
[1] Union College,Department of Mathematics
[2] University of British Columbia,Pacific Institute of Mathematical Sciences
[3] Université Laval,Département de Mathématiques et de Statistique
[4] Pavillion Alexandre-Vachon,School of Mathematics
[5] Tata Institute of Fundamental Research,undefined
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Fine Selmer groups; Control theorems; Conjugate modular forms; Primary 11R23; Secondary 11F11, 11R18;
D O I
暂无
中图分类号
学科分类号
摘要
Let O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} be the ring of integers of a finite extension of Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}_p$$\end{document}. We prove two control theorems for fine Selmer groups of general cofinitely generated modules over O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document}. We apply these control theorems to compare the fine Selmer group attached to a modular form f over the cyclotomic Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_p$$\end{document}-extension of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document} to its counterpart attached to the conjugate modular form f¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{f}}$$\end{document}.
引用
收藏
页码:237 / 258
页数:21
相关论文
共 50 条
  • [1] Control theorems for fine Selmer groups, and duality of fine Selmer groups attached to modular forms
    Hatley, Jeffrey
    Kundu, Debanjana
    Lei, Antonio
    Ray, Jishnu
    RAMANUJAN JOURNAL, 2023, 60 (01): : 237 - 258
  • [2] ON FINE SELMER GROUPS AND SIGNED SELMER GROUPS OF ELLIPTIC MODULAR FORMS
    Lei, Antonio
    Lim, Meng Fai
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (03) : 419 - 430
  • [3] Control Theorems for Fine Selmer Groups
    Kundu, Debanjana
    Lim, Meng Fai
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 851 - 880
  • [4] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Kleine, Soeren
    Matar, Ahmed
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [5] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Sören Kleine
    Ahmed Matar
    Results in Mathematics, 2023, 78
  • [6] NOTES ON THE FINE SELMER GROUPS
    Lim, Meng Fai
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (02) : 337 - 362
  • [7] On the μ-invariant of fine Selmer groups
    Aribam, Chandrakant S.
    JOURNAL OF NUMBER THEORY, 2014, 135 : 284 - 300
  • [8] The growth of fine Selmer groups
    Lim, Meng Fai
    Murty, V. Kumar
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2016, 31 (01) : 79 - 94
  • [9] Fine Selmer groups and ideal class groups
    Kleine, Soren
    Mueller, Katharina
    RAMANUJAN JOURNAL, 2023, 61 (04): : 1213 - 1267
  • [10] Fine Selmer groups and ideal class groups
    Sören Kleine
    Katharina Müller
    The Ramanujan Journal, 2023, 61 : 1213 - 1267