Control Theorems for Fine Selmer Groups

被引:2
|
作者
Kundu, Debanjana [1 ]
Lim, Meng Fai [2 ,3 ]
机构
[1] Univ British Columbia, Math Dept, 1984 Math Rd, Vancouver, BC V6T1Z2, Canada
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2022年 / 34卷 / 03期
基金
中国国家自然科学基金;
关键词
ELLIPTIC-CURVES; IWASAWA THEORY; CONJECTURES; EXTENSIONS; FORMULA; VALUES;
D O I
10.5802/jtnb.1231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the growth of the p-primary fine Selmer group, R(E/F ') , of an elliptic curve over an intermediate sub-extension F ' of a p-adic Lie extension, L/F. We estimate the Z(p)-corank of the kernel and cokernel of the restriction map r(L/F ') : R(E/F ')-> R(E /L)(Gal(L/F ')) with F ' a finite extension of F contained in L. We show that the growth of the fine Selmer groups in these intermediate sub-extension is related to the structure of the fine Selmer group over the infinite level. On specializing to certain (possibly non-commutative) p-adic Lie extensions, we prove finiteness of the kernel and cokernel and provide growth estimates on their orders.
引用
收藏
页码:851 / 880
页数:31
相关论文
共 50 条
  • [1] Control theorems for fine Selmer groups, and duality of fine Selmer groups attached to modular forms
    Jeffrey Hatley
    Debanjana Kundu
    Antonio Lei
    Jishnu Ray
    The Ramanujan Journal, 2023, 60 : 237 - 258
  • [2] Control theorems for fine Selmer groups, and duality of fine Selmer groups attached to modular forms
    Hatley, Jeffrey
    Kundu, Debanjana
    Lei, Antonio
    Ray, Jishnu
    RAMANUJAN JOURNAL, 2023, 60 (01): : 237 - 258
  • [3] Control theorems for Selmer groups of nearly ordinary deformations
    Fouquet, Olivier
    Ochiai, Tadashi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 666 : 163 - 187
  • [4] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Kleine, Soeren
    Matar, Ahmed
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [5] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Sören Kleine
    Ahmed Matar
    Results in Mathematics, 2023, 78
  • [6] NOTES ON THE FINE SELMER GROUPS
    Lim, Meng Fai
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (02) : 337 - 362
  • [7] ON FINE SELMER GROUPS AND SIGNED SELMER GROUPS OF ELLIPTIC MODULAR FORMS
    Lei, Antonio
    Lim, Meng Fai
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (03) : 419 - 430
  • [8] On the μ-invariant of fine Selmer groups
    Aribam, Chandrakant S.
    JOURNAL OF NUMBER THEORY, 2014, 135 : 284 - 300
  • [9] The growth of fine Selmer groups
    Lim, Meng Fai
    Murty, V. Kumar
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2016, 31 (01) : 79 - 94
  • [10] Fine Selmer groups and ideal class groups
    Kleine, Soren
    Mueller, Katharina
    RAMANUJAN JOURNAL, 2023, 61 (04): : 1213 - 1267