Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation

被引:0
|
作者
Enrico Facca
Sara Daneri
Franco Cardin
Mario Putti
机构
[1] Scuola Normale Superiore,Centro di Ricerca Matematica Ennio De Giorgi
[2] Gran Sasso Science Institute,Department of Mathematics “Tullio Levi
[3] University of Padua,Civita”
来源
关键词
Monge–Kantorovich equations; Optimal transport; Numerical solution; Earth mover’s distance; 35M20; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We extend our previous work on a biologically inspired dynamic Monge–Kantorovich model (Facca et al. in SIAM J Appl Math 78:651–676, 2018) and propose it as an effective tool for the numerical solution of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-PDE based optimal transportation model. We first introduce a new Lyapunov-candidate functional and show that its derivative along the solution trajectory is strictly negative. Moreover, we are able to show that this functional admits the optimal transport density as a unique minimizer, providing further support to the conjecture that our dynamic model is time-asymptotically equivalent to the Monge–Kantorovich equations governing L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} optimal transport. Remarkably, this newly proposed Lyapunov-candidate functional can be effectively used to calculate the Wasserstein-1 (or earth mover’s) distance between two measures. We numerically solve these equations via a simple approach based on standard forward Euler time stepping and linear Galerkin finite element. The accuracy and robustness of the proposed solver is verified on a number of test problems of mixed complexity also in comparison with other approaches proposed in the literature. Numerical results show that the proposed scheme is very efficient and accurate for the calculation the Wasserstein-1 distances.
引用
收藏
相关论文
共 50 条
  • [41] Numerical Solution for Stiff Dynamic Equations of Flexible Multibody System
    吕艳平
    吴国荣
    Journal of Southwest Jiaotong University(English Edition), 2008, (02) : 160 - 163
  • [42] Stochastic differential equations harvesting optimization with stochastic prices: Formulation and numerical solution
    Reis, Miguel
    Brites, Nuno M.
    RESULTS IN APPLIED MATHEMATICS, 2025, 25
  • [43] Formulation of the inverse problem of calculating the optical surface for an illuminating beam with a plane wavefront as the Monge-Kantorovich problem
    Doskolovich, L. L.
    Mingazov, A. A.
    Bykov, D. A.
    Bezus, E. A.
    COMPUTER OPTICS, 2019, 43 (05) : 705 - 713
  • [44] ADAPTIVE APPROXIMATION OF THE MONGE-KANTOROVICH PROBLEM VIA PRIMAL-DUAL GAP ESTIMATES
    Bartels, Soren
    Schon, Patrick
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2237 - 2261
  • [45] Numerical solution of stiff differential equations via Haar wavelets
    Hsiao, CH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (09) : 1117 - 1123
  • [46] NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS
    Asadi, S.
    Borzabadi, A. H.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (02): : 221 - 228
  • [47] SYSTEMATIC FORMULATION AND SOLUTION OF KINEMATIC AND DYNAMIC EQUATIONS FOR 3-DIMENSIONAL MECHANISMS
    KECSKEMETHY, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (04): : T87 - T88
  • [48] A NUMERICAL SOLUTION TO MONGE'S PROBLEM WITH A FINSLER DISTANCE AS COST
    Benamou, Jean-David
    Carlier, Guillaume
    Hatchi, Romeo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2133 - 2148
  • [49] The Monge-Ampere equation: Various forms and numerical solution
    Zheligovsky, V.
    Podvigina, O.
    Frisch, U.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (13) : 5043 - 5061
  • [50] Partitioning and dynamic load balancing for the numerical solution of partial differential equations
    Department of Computer Science, Williams College, Williamstown, MA 01267, United States
    不详
    不详
    Lect. Notes Comput. Sci. Eng., 2006, (55-88):