Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation

被引:0
|
作者
Enrico Facca
Sara Daneri
Franco Cardin
Mario Putti
机构
[1] Scuola Normale Superiore,Centro di Ricerca Matematica Ennio De Giorgi
[2] Gran Sasso Science Institute,Department of Mathematics “Tullio Levi
[3] University of Padua,Civita”
来源
关键词
Monge–Kantorovich equations; Optimal transport; Numerical solution; Earth mover’s distance; 35M20; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We extend our previous work on a biologically inspired dynamic Monge–Kantorovich model (Facca et al. in SIAM J Appl Math 78:651–676, 2018) and propose it as an effective tool for the numerical solution of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-PDE based optimal transportation model. We first introduce a new Lyapunov-candidate functional and show that its derivative along the solution trajectory is strictly negative. Moreover, we are able to show that this functional admits the optimal transport density as a unique minimizer, providing further support to the conjecture that our dynamic model is time-asymptotically equivalent to the Monge–Kantorovich equations governing L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} optimal transport. Remarkably, this newly proposed Lyapunov-candidate functional can be effectively used to calculate the Wasserstein-1 (or earth mover’s) distance between two measures. We numerically solve these equations via a simple approach based on standard forward Euler time stepping and linear Galerkin finite element. The accuracy and robustness of the proposed solver is verified on a number of test problems of mixed complexity also in comparison with other approaches proposed in the literature. Numerical results show that the proposed scheme is very efficient and accurate for the calculation the Wasserstein-1 distances.
引用
收藏
相关论文
共 50 条
  • [1] Numerical Solution of Monge-Kantorovich Equations via a Dynamic Formulation
    Facca, Enrico
    Daneri, Sara
    Cardin, Franco
    Putti, Mario
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [2] A mixed formulation of the Monge-Kantorovich equations
    Barrett, John W.
    Prigozhin, Leonid
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (06): : 1041 - 1060
  • [3] NUMERICAL SOLUTION OF DIFFUSION EQUATIONS WITH KANTOROVICH METHOD
    GALLIGANI, I
    GIORCELLI, M
    ENERGIA NUCLEARE, 1966, 13 (02): : 73 - +
  • [4] A Monge-Kantorovich approach to the Maxwell equations
    Brenier, Y
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 179 - 186
  • [5] EXISTENCE OF SOLUTIONS TO DEGENERATE PARABOLIC EQUATIONS VIA THE MONGE-KANTOROVICH THEORY
    Agueh, Martial
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (03) : 309 - 360
  • [6] Partial L1 Monge-Kantorovich problem: variational formulation and numerical approximation
    Barrett, John W.
    Prigozhin, Leonid
    INTERFACES AND FREE BOUNDARIES, 2009, 11 (02) : 201 - 238
  • [7] NUMERICAL SOLUTION OF THE MONGE-KANTOROVICH PROBLEM BY DENSITY LIFT-UP CONTINUATION
    Bouharguane, Afaf
    Iollo, Angelo
    Weynans, Lisl
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1577 - 1592
  • [8] On a system of partial differential equations of Monge-Kantorovich type
    Crasta, Graziano
    Malusa, Annalisa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) : 484 - 509
  • [9] Numerical and analytical results for the transportation problem of Monge-Kantorovich
    Rüschendorf, L
    Uckelmann, L
    METRIKA, 2000, 51 (03) : 245 - 258
  • [10] Numerical and analytical results for the transportation problem of Monge-Kantorovich
    Ludger Rüschendorf
    Ludger Uckelmann
    Metrika, 2000, 51 : 245 - 258