The Riemann zeta function on arithmetic progressions and denseness properties

被引:0
|
作者
Junghun Lee
机构
来源
关键词
Riemann zeta function; Value distribution; Denseness; Arithmetic progressions; 11M06; 30K10;
D O I
暂无
中图分类号
学科分类号
摘要
In recent joint work with Sourmelidis, Steuding and Suriajaya, the author studied the distribution of values of the Riemann zeta function on arithmetic progressions in relation to denseness. We showed that one can find an infinitely long arithmetic progression such that the sequence of values of the Riemann zeta function on the right-half of the critical strip shifted with that arithmetic progression is contained in any given subset of the Riemann sphere. In this paper, we give an alternative proof which allows us to extend the result to the line 1+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+it$$\end{document} (t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document}). We further show that we can relate the set of values of the Riemann zeta function on arithmetic progressions in the right-half of the critical strip to that on the critical line 1/2+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2+it$$\end{document} (t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document}). The latter gives a new approach to the question on denseness of ζ(1/2+it)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (1/2+it)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] CALCULATION OF RIEMANN ZETA FUNCTION
    不详
    MATHEMATICS OF COMPUTATION, 1965, 19 (89) : 155 - &
  • [42] THE RIEMANN ZETA-FUNCTION
    ATKINSON, FV
    DUKE MATHEMATICAL JOURNAL, 1950, 17 (01) : 63 - 68
  • [43] Correlations of the Riemann zeta function
    Curran, Michael J.
    MATHEMATIKA, 2024, 70 (04)
  • [44] Riemann's Zeta Function
    Rivat, Joel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS IN THEIR INTERACTIONS WITH ARITHMETICS AND COMBINATORICS, 2018, 2213 : 27 - 52
  • [45] The argument of the Riemann zeta function
    Karatsuba, AA
    Korolev, MA
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (03) : 433 - 488
  • [46] On the Riemann zeta-function.
    Titchmarsh, EC
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1932, 28 : 273 - 274
  • [47] Identities for the Riemann zeta function
    Rubinstein, Michael O.
    RAMANUJAN JOURNAL, 2012, 27 (01): : 29 - 42
  • [48] Lectures on the Riemann Zeta Function
    Waldhauser, Tamas
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (1-2): : 352 - 352
  • [49] An inequality for the Riemann zeta function
    I. Belovas
    Acta Mathematica Hungarica, 2023, 170 : 367 - 378
  • [50] Pseudomoments of the Riemann zeta function
    Bondarenko, Andriy
    Brevig, Ole Fredrik
    Saksman, Eero
    Seip, Kristian
    Zhao, Jing
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 709 - 724