A posteriori error estimation for model order reduction of parametric systems

被引:0
|
作者
Lihong Feng
Sridhar Chellappa
Peter Benner
机构
[1] Max Planck Institute for Dynamics of Complex Technical Systems,Computational Methods in Systems and Control Theory
关键词
A posteriori error estimation; Parametric systems; Model order reduction;
D O I
暂无
中图分类号
学科分类号
摘要
This survey discusses a posteriori error estimation for model order reduction of parametric systems, including linear and nonlinear, time-dependent and steady systems. We focus on introducing the error estimators we have proposed in the past few years and comparing them with the most related error estimators from the literature. For a clearer comparison, we have translated some existing error bounds proposed in function spaces into the vector space Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} and provide the corresponding proofs in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C^n$$\end{document}. Some new insights into our proposed error estimators are explored. Moreover, we review our newly proposed error estimator for nonlinear time-evolution systems, which is applicable to reduced-order models solved by arbitrary time-integration solvers. Our recent work on multi-fidelity error estimation is also briefly discussed. Finally, we derive a new inf-sup-constant-free output error estimator for nonlinear time-evolution systems. Numerical results for three examples show the robustness of the new error estimator.
引用
收藏
相关论文
共 50 条
  • [21] Exploration of efficient reduced-order modeling and a posteriori error estimation
    Chaudhry, J. H.
    Estep, D.
    Gunzburger, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 111 (02) : 103 - 122
  • [22] Will the PLS criterion for order estimation work with AML and a posteriori prediction error
    Hemerly, Elder M.
    Fragoso, Marcelo D.
    Systems and Control Letters, 1990, 14 (01): : 79 - 92
  • [23] Error estimation for Arnoldi-based model order reduction of MEMS
    Bechtold, T
    Rudnyi, EB
    Korvink, JG
    NSTI NANOTECH 2004, VOL 2, TECHNICAL PROCEEDINGS, 2004, : 430 - 433
  • [24] Model order reduction for a family of linear systems with applications in parametric and uncertain systems
    Benner, Peter
    Grundel, Sara
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 1 - 6
  • [25] A POSTERIORI ERROR ESTIMATION FOR DEIM REDUCED NONLINEAR DYNAMICAL SYSTEMS
    Wirtz, D.
    Sorensen, D. C.
    Haasdonk, B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A311 - A338
  • [26] Robust model order reduction of an electrical machine at startup through reduction error estimation
    Montier, Laurent
    Henneron, Thomas
    Clenet, Stephane
    Goursaud, Benjamin
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2018, 31 (02)
  • [27] Discretization and Model Reduction Error Estimation of Interconnected Dynamical Systems
    Dogancic, Bruno
    Jokic, Marko
    IFAC PAPERSONLINE, 2022, 55 (04): : 177 - 182
  • [28] Oscillation in a posteriori error estimation
    Christian Kreuzer
    Andreas Veeser
    Numerische Mathematik, 2021, 148 : 43 - 78
  • [29] Oscillation in a posteriori error estimation
    Kreuzer, Christian
    Veeser, Andreas
    NUMERISCHE MATHEMATIK, 2021, 148 (01) : 43 - 78
  • [30] A posteriori error estimation and adaptive strategy for PGD model reduction applied to parametrized linear parabolic problems
    Chamoin, Ludovic
    Pled, Florent
    Allier, Pierre-Eric
    Ladeveze, Pierre
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 118 - 146