A posteriori error estimation for model order reduction of parametric systems

被引:0
|
作者
Lihong Feng
Sridhar Chellappa
Peter Benner
机构
[1] Max Planck Institute for Dynamics of Complex Technical Systems,Computational Methods in Systems and Control Theory
关键词
A posteriori error estimation; Parametric systems; Model order reduction;
D O I
暂无
中图分类号
学科分类号
摘要
This survey discusses a posteriori error estimation for model order reduction of parametric systems, including linear and nonlinear, time-dependent and steady systems. We focus on introducing the error estimators we have proposed in the past few years and comparing them with the most related error estimators from the literature. For a clearer comparison, we have translated some existing error bounds proposed in function spaces into the vector space Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} and provide the corresponding proofs in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C^n$$\end{document}. Some new insights into our proposed error estimators are explored. Moreover, we review our newly proposed error estimator for nonlinear time-evolution systems, which is applicable to reduced-order models solved by arbitrary time-integration solvers. Our recent work on multi-fidelity error estimation is also briefly discussed. Finally, we derive a new inf-sup-constant-free output error estimator for nonlinear time-evolution systems. Numerical results for three examples show the robustness of the new error estimator.
引用
收藏
相关论文
共 50 条
  • [1] A posteriori error estimation for model order reduction of parametric systems
    Feng, Lihong
    Chellappa, Sridhar
    Benner, Peter
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [2] Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems
    Grunert, Dennis
    Fehr, Joerg
    Haasdonk, Bernard
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (08):
  • [3] Efficient Error Estimator for Model Order Reduction of Linear Parametric Systems
    Feng, Lihong
    Benner, Peter
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 346 - 349
  • [4] A-posteriori error estimation for second order mechanical systems
    Ruiner, Thomas
    Fehr, Joerg
    Haasdonk, Bernard
    Eberhard, Peter
    ACTA MECHANICA SINICA, 2012, 28 (03) : 854 - 862
  • [5] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jörg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 : 854 - 862
  • [6] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jrg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 (03) : 854 - 862
  • [7] Error Estimation for Model-Order Reduction of Finite-Element Parametric Problems
    Clenet, S.
    Henneron, T.
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (08)
  • [8] Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
    Bishop, Joseph E.
    Brown, Judith A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 577 - 599
  • [9] ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR PARAMETRIC OPERATOR EQUATIONS
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A339 - A363
  • [10] A posteriori error estimation for numerical model reduction in computational homogenization of porous media
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    Janicke, Ralf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5350 - 5380