A hierarchical a posteriori error estimator for the Reduced Basis Method

被引:0
|
作者
Stefan Hain
Mario Ohlberger
Mladjan Radic
Karsten Urban
机构
[1] Ulm University,Institute for Numerical Mathematics
[2] University of Münster,Applied Mathematics
来源
关键词
Reduced Basis Method; A posteriori error estimator; Hierarchical error estimator; 65N30; 65N15; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant—may become infeasible.
引用
收藏
页码:2191 / 2214
页数:23
相关论文
共 50 条
  • [11] Hierarchical basis a posteriori error estimates for compressible Stokes flows
    Kweon, JR
    APPLIED NUMERICAL MATHEMATICS, 2000, 32 (01) : 53 - 68
  • [12] ACCURATE AND ONLINE-EFFICIENT EVALUATION OF THE A POSTERIORI ERROR BOUND IN THE REDUCED BASIS METHOD
    Casenave, Fabien
    Ern, Alexandre
    Lelievre, Tony
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 207 - 229
  • [13] A-Posteriori Error Estimates for the Localized Reduced Basis Multi-Scale Method
    Ohlberger, Mario
    Schindler, Felix
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 421 - 429
  • [14] A hierarchical A posteriori error estimator. Its application to mixed finite elements
    Achchab, B
    Agouzal, A
    Baranger, J
    Maitre, JF
    NUMERISCHE MATHEMATIK, 1998, 80 (02) : 159 - 179
  • [15] A posteriori error estimator for Lanczos-Chebyshev reduction method
    Odekunle, MR
    Ibiejugba, MA
    Onumanyi, P
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (2-3) : 245 - 252
  • [16] Natural norm a posteriori error estimators for reduced basis approximations
    Sen, S.
    Veroy, K.
    Huynh, D. B. P.
    DepariS, S.
    Nguyen, N. C.
    Patera, A. T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) : 37 - 62
  • [17] Reduced basis approximation and a posteriori error estimation for a Boltzmann model
    Patera, Anthony T.
    Ronquist, Einar M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (29-30) : 2925 - 2942
  • [18] A Goal-Oriented Error Estimator for Reduced Basis Method Modeling of Microwave Devices
    Rewienski, Michal
    Lamecki, Adam
    Mrozowski, Michal
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (04) : 208 - 210
  • [19] An a posteriori error estimator for anisotropic refinement
    Siebert, KG
    NUMERISCHE MATHEMATIK, 1996, 73 (03) : 373 - 398
  • [20] An anisotropic A posteriori error estimator for CFD
    Feijóo, RA
    Padra, C
    Quintana, F
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2002, 16 (04) : 297 - 304