New simple modular Lie superalgebras as generalized prolongs

被引:0
|
作者
S. Bouarroudj
P. Ya. Grozman
D. A. Leites
机构
[1] United Arab Emirates University,Department of Mathematics
[2] Equa Simulation AB,Department of Mathematics
[3] University of Stockholm,undefined
关键词
Cartan prolong; Lie superalgebra;
D O I
暂无
中图分类号
学科分类号
摘要
Over algebraically closed fields of characteristic p > 2, —prolongations of simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. We discover several new simple Lie superalgebras, serial and exceptional, including super versions of Brown and Melikyan algebras, and thus corroborate the super analog of the Kostrikin-Shafarevich conjecture. Simple Lie superalgebras with 2 × 2 Cartan matrices are classified.
引用
收藏
页码:161 / 168
页数:7
相关论文
共 50 条
  • [31] SIMPLE SUPERMODULES OVER LIE SUPERALGEBRAS
    Chen, Chih-Whi
    Mazorchuk, Volodymyr
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 899 - 921
  • [32] SEMISIMPLE LIE-SUPERALGEBRAS WHICH ARE NOT THE DIRECT SUMS OF SIMPLE LIE-SUPERALGEBRAS
    HURNI, JP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01): : 1 - 14
  • [33] On Generalized Jordan Prederivations and Generalized Prederivations of Lie Superalgebras
    Ma, Yao
    Chen, Liangyun
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [34] Lie n superderivations and generalized Lie n superderivations of superalgebras
    Yuan, He
    Chen, Liangyun
    OPEN MATHEMATICS, 2018, 16 : 196 - 209
  • [35] Free Lie superalgebras and the generalized Witt formula
    Kang, SJ
    MONSTER AND LIE ALGEBRAS, 1998, 7 : 207 - 219
  • [36] The modular representations of basic classical restricted Lie superalgebras
    Li, Yi-Yang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (05)
  • [37] Some properties of the family I" of modular Lie superalgebras
    Xu, Xiaoning
    Chen, Liangyun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (04) : 1087 - 1112
  • [38] Central extensions of generalized orthosymplectic Lie superalgebras
    ZhiHua Chang
    YongJie Wang
    Science China Mathematics, 2017, 60 : 223 - 260
  • [39] A class of generalized odd Hamiltonian Lie superalgebras
    Ren, Li
    Mu, Qiang
    Zhang, Yongzheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (05) : 1105 - 1129
  • [40] Generalized Casimir operators for loop Lie superalgebras
    Das, Abhishek
    Pattanayak, Santosha
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,