We study the asymptotic invertibility as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n \to+ \infty $$
\end{document} of matrices of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\alpha _{kj}^{(n)}= a(k/n,j/n,k - j)$$
\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\beta _{kj}^{(n)}= b(k/E(n),j/E(n),k - j)$$
\end{document}, where a and b are functions defined on the sets \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$[0,1] \times [0,1] \times \mathbb{Z}{\text{ and [0, + }}\infty {\text{)}} \times {\text{[0, + }}\infty {\text{)}} \times \mathbb{Z}{\text{, respectively, }}E(n) \to+ \infty ,{\text{ and }}n/E(n) \to+ \infty $$
\end{document}. The joint asymptotic behavior of the spectrum of these matrices is analyzed.