Second-Order Models for Optimal Transport and Cubic Splines on the Wasserstein Space

被引:0
|
作者
Jean-David Benamou
Thomas O. Gallouët
François-Xavier Vialard
机构
[1] INRIA,Project Team Mokaplan
[2] Université Paris-Dauphine,Ceremade
[3] PSL Research University,LIGM, UPEM
[4] University Paris-Est,undefined
关键词
Multimarginal optimal transportation; Splines; Wasserstein geodesics; 49M99; 65D99;
D O I
暂无
中图分类号
学科分类号
摘要
On the space of probability densities, we extend the Wasserstein geodesics to the case of higher-order interpolation such as cubic spline interpolation. After presenting the natural extension of cubic splines to the Wasserstein space, we propose a simpler approach based on the relaxation of the variational problem on the path space. We explore two different numerical approaches, one based on multimarginal optimal transport and entropic regularization and the other based on semi-discrete optimal transport.
引用
收藏
页码:1113 / 1143
页数:30
相关论文
共 50 条
  • [41] SECOND-ORDER DIFFERENTIAL EQUATIONS IN BANACH SPACE
    SOBOLEVSKII, PE
    DOKLADY AKADEMII NAUK SSSR, 1962, 146 (04): : 774 - &
  • [42] On D-minimax optimal second-order designs for estimating slopes of second-order response surfaces
    Huda, Shahariar
    Alqallaf, Fatemah
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2009, 6 (04): : 423 - 431
  • [43] Temperature dependence of the second-order elastic constants of cubic crystals
    Sorokin, BP
    Glushkov, DA
    Aleksandrov, KS
    PHYSICS OF THE SOLID STATE, 1999, 41 (02) : 208 - 212
  • [44] Algorithmic construction of R-optimal designs for second-order response surface models
    Liu, Xin
    Yue, Rong-Xian
    Xu, Jing
    Chatterjee, Kashinath
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 178 : 61 - 69
  • [45] Temperature dependence of the second-order elastic constants of cubic crystals
    B. P. Sorokin
    D. A. Glushkov
    K. S. Aleksandrov
    Physics of the Solid State, 1999, 41 : 208 - 212
  • [46] A Library of Second-Order Models for Synchronous Machines
    Ajala, Olaoluwapo
    Dominguez-Garcia, Alejandro
    Sauer, Peter
    Liberzon, Daniel
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) : 4803 - 4814
  • [47] MINIMUM MODELS OF SECOND-ORDER SET THEORIES
    Williams, Kameryn J.
    JOURNAL OF SYMBOLIC LOGIC, 2019, 84 (02) : 589 - 620
  • [48] SECOND-ORDER TRAFFIC FLOW MODELS ON NETWORKS
    Goettlich, Simone
    Herty, Michael
    Moutari, Salissou
    Weissen, Jennifer
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (01) : 258 - 281
  • [49] Review of second-order models for adsorption systems
    Ho, Yuh-Shan
    JOURNAL OF HAZARDOUS MATERIALS, 2006, 136 (03) : 681 - 689
  • [50] An Illustration of Second-Order Latent Growth Models
    Hancock, Gregory R.
    Kuo, Wen-Ling
    Lawrence, Frank R.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (03) : 470 - 489