Second-Order Models for Optimal Transport and Cubic Splines on the Wasserstein Space

被引:0
|
作者
Jean-David Benamou
Thomas O. Gallouët
François-Xavier Vialard
机构
[1] INRIA,Project Team Mokaplan
[2] Université Paris-Dauphine,Ceremade
[3] PSL Research University,LIGM, UPEM
[4] University Paris-Est,undefined
关键词
Multimarginal optimal transportation; Splines; Wasserstein geodesics; 49M99; 65D99;
D O I
暂无
中图分类号
学科分类号
摘要
On the space of probability densities, we extend the Wasserstein geodesics to the case of higher-order interpolation such as cubic spline interpolation. After presenting the natural extension of cubic splines to the Wasserstein space, we propose a simpler approach based on the relaxation of the variational problem on the path space. We explore two different numerical approaches, one based on multimarginal optimal transport and entropic regularization and the other based on semi-discrete optimal transport.
引用
收藏
页码:1113 / 1143
页数:30
相关论文
共 50 条
  • [1] Second-Order Models for Optimal Transport and Cubic Splines on the Wasserstein Space
    Benamou, Jean-David
    Gallouet, Thomas O.
    Vialard, Francois-Xavier
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (05) : 1113 - 1143
  • [2] Cubic-matrix splines and second-order matrix models
    Tung, M. M.
    Soler, L.
    Defez, E.
    Hervas, A.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 949 - 953
  • [3] Numerical solutions of second-order matrix models using cubic-matrix splines
    Tung, M. M.
    Defez, E.
    Sastre, J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) : 2561 - 2571
  • [4] Approximate Numerical Solutions of Autonomous Second-Order Matrix Models Using Cubic Matrix Splines
    Defez, E.
    Tung, M. M.
    Ibanez, J.
    Hervas, A.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 785 - +
  • [5] Comparison of viscosity solutions for a class of second-order PDEs on the Wasserstein space
    Bayraktar, Erhan
    Ekren, Ibrahim
    Zhang, Xin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2025, 50 (04) : 570 - 613
  • [6] The use of cubic splines in the numerical solution of a system of second-order boundary value problems
    Al-Said, EA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (6-7) : 861 - 869
  • [7] TIME OPTIMAL CONTROL OF SECOND-ORDER SYSTEMS WITH TRANSPORT LAG
    RAGG, BC
    STAPLETO.CA
    INTERNATIONAL JOURNAL OF CONTROL, 1969, 9 (03) : 243 - &
  • [8] Optimal transport and Wasserstein distances for causal models
    Cheridito, Patrick
    Eckstein, Stephan
    BERNOULLI, 2025, 31 (02) : 1351 - 1376
  • [9] Wasserstein space as state space of quantum mechanics and optimal transport
    Rosyid, M. F.
    Wahyuningsih, K.
    UNNES PHYSICS INTERNATIONAL SYMPOSIUM 2018 (UPIS2018), 2019, 1170
  • [10] E-OPTIMAL DESIGNS FOR SECOND-ORDER RESPONSE SURFACE MODELS
    Dette, Holger
    Grigriev, Yuri
    ANNALS OF STATISTICS, 2014, 42 (04): : 1635 - 1656