Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one

被引:0
|
作者
Rong Pan
Tao Feng
Lidong Wang
Xiaomiao Wang
机构
[1] Yunnan University,Department of Mathematics
[2] Beijing Jiaotong University,Department of Mathematics
[3] China People’s Police University,Department of Basic Courses
[4] Ningbo University,School of Mathematics and Statistics
来源
关键词
Optical orthogonal signature pattern code; Optical orthogonal code; OCDMA; 05B40; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an (m,n,3,λa,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n,3,\lambda _a,1)$$\end{document}-OOSPC with λa=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _a=2,3$$\end{document} is established. The exact number of codewords of an optimal (m,n,3,λa,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n,3,\lambda _a,1)$$\end{document}-OOSPC is determined for any positive integers m,n≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\equiv 2\ ({\mathrm{mod }}\ 4)$$\end{document} and λa∈{2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _a\in \{2,3\}$$\end{document}.
引用
收藏
页码:119 / 131
页数:12
相关论文
共 50 条
  • [21] Combinatorial constructions for maximum optical orthogonal signature pattern codes
    Pan, Rong
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2918 - 2931
  • [22] A New Family of Two-dimensional Optical Orthogonal Codes with Zero Cross-correlation Zone
    Ji, Jianhua
    Luo, Zhao
    Zheng, Hongxia
    Li, Wenjun
    Wang, Ke
    Xu, Ming
    Yang, Shuwen
    2015 OPTOELECTRONICS GLOBAL CONFERENCE (OGC), 2015,
  • [23] Constructions of optimal optical orthogonal codes with weight five
    Ma, SK
    Chang, YX
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 54 - 69
  • [24] Time-and-frequency-hopping optical orthogonal codes with hierarchical cross-correlation constraints for service differentiation
    Lee, Chung-Keun
    Seo, Seting-Woo
    2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 2134 - +
  • [25] New Optimal Variable-Weight Optical Orthogonal Codes
    Wu, Dianhua
    Cao, Jiayun
    Fan, Pingzhi
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 102 - 112
  • [26] Combinatorial constructions of optimal optical orthogonal codes with weight 4
    Chang, YX
    Fuji-Hara, R
    Miao, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) : 1283 - 1292
  • [27] Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Zhao, Hengming
    Wu, Dianhua
    Fan, Pingzhi
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (04) : 274 - 291
  • [28] A new class of optimal optical orthogonal codes with weight six
    Wang, Su
    Wang, Lingye
    Wang, Jinhua
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 61 - 64
  • [29] Further results on optimal optical orthogonal codes with weight 4
    Chang, YX
    Yin, JX
    DISCRETE MATHEMATICS, 2004, 279 (1-3) : 135 - 151
  • [30] A new class of optimal optical orthogonal codes with weight five
    Ma, SK
    Chang, YX
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1848 - 1850