Lower bounds for the scalar curvature of noncompact gradient solitons of List’s flow

被引:0
|
作者
Bingqing Ma
Guangyue Huang
机构
[1] Henan Normal University,College of Mathematics and Information Science
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 53C25; Secondary 53C44; List’s flow; Gradient soliton; Maximum principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that a noncompact gradient shrinking soliton to the List flow has at most quadratic decay for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S = R-\alpha_n| \nabla \varphi|^2}$$\end{document}. Moreover, we prove a similar result for certain noncompact gradient steady solitons to the List flow. These generalize the results of Chow et al. [4].
引用
收藏
页码:593 / 599
页数:6
相关论文
共 50 条
  • [1] Lower bounds for the scalar curvature of noncompact gradient solitons of List's flow
    Ma, Bingqing
    Huang, Guangyue
    ARCHIV DER MATHEMATIK, 2013, 100 (06) : 593 - 599
  • [2] Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
    Chow, Bennett
    Lu, Peng
    Yang, Bo
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1265 - 1267
  • [3] List's flow with integral curvature bounds on complete noncompact Riemannian manifolds
    Li, Chuanhuan
    Li, Yi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [4] On scalar curvature lower bounds and scalar curvature measure
    Lott, John
    ADVANCES IN MATHEMATICS, 2022, 408
  • [5] Weak scalar curvature lower bounds along Ricci flow
    Wenshuai Jiang
    Weimin Sheng
    Huaiyu Zhang
    Science China(Mathematics), 2023, 66 (06) : 1141 - 1160
  • [6] Weak scalar curvature lower bounds along Ricci flow
    Wenshuai Jiang
    Weimin Sheng
    Huaiyu Zhang
    Science China Mathematics, 2023, 66 : 1141 - 1160
  • [7] Weak scalar curvature lower bounds along Ricci flow
    Jiang, Wenshuai
    Sheng, Weimin
    Zhang, Huaiyu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (06) : 1141 - 1160
  • [8] A SHARP LOWER BOUND FOR THE SCALAR CURVATURE OF CERTAIN STEADY GRADIENT RICCI SOLITONS
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (06) : 2145 - 2148
  • [9] ON GRADIENT RICCI SOLITONS WITH CONSTANT SCALAR CURVATURE
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (01) : 369 - 378
  • [10] ON THE SCALAR CURVATURE ESTIMATES FOR GRADIENT YAMABE SOLITONS
    Chu, Yawei
    Wang, Xue
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) : 246 - 257