Lower bounds for the scalar curvature of noncompact gradient solitons of List's flow

被引:4
|
作者
Ma, Bingqing [1 ]
Huang, Guangyue [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
List's flow; Gradient soliton; Maximum principle; RICCI SOLITONS;
D O I
10.1007/s00013-013-0534-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that a noncompact gradient shrinking soliton to the List flow has at most quadratic decay for . Moreover, we prove a similar result for certain noncompact gradient steady solitons to the List flow. These generalize the results of Chow et al. [4].
引用
收藏
页码:593 / 599
页数:7
相关论文
共 50 条
  • [1] Lower bounds for the scalar curvature of noncompact gradient solitons of List’s flow
    Bingqing Ma
    Guangyue Huang
    Archiv der Mathematik, 2013, 100 : 593 - 599
  • [2] Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
    Chow, Bennett
    Lu, Peng
    Yang, Bo
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1265 - 1267
  • [3] List's flow with integral curvature bounds on complete noncompact Riemannian manifolds
    Li, Chuanhuan
    Li, Yi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [4] On scalar curvature lower bounds and scalar curvature measure
    Lott, John
    ADVANCES IN MATHEMATICS, 2022, 408
  • [5] Weak scalar curvature lower bounds along Ricci flow
    Wenshuai Jiang
    Weimin Sheng
    Huaiyu Zhang
    Science China(Mathematics), 2023, 66 (06) : 1141 - 1160
  • [6] Weak scalar curvature lower bounds along Ricci flow
    Wenshuai Jiang
    Weimin Sheng
    Huaiyu Zhang
    Science China Mathematics, 2023, 66 : 1141 - 1160
  • [7] Weak scalar curvature lower bounds along Ricci flow
    Jiang, Wenshuai
    Sheng, Weimin
    Zhang, Huaiyu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (06) : 1141 - 1160
  • [8] A SHARP LOWER BOUND FOR THE SCALAR CURVATURE OF CERTAIN STEADY GRADIENT RICCI SOLITONS
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (06) : 2145 - 2148
  • [9] ON GRADIENT RICCI SOLITONS WITH CONSTANT SCALAR CURVATURE
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (01) : 369 - 378
  • [10] ON THE SCALAR CURVATURE ESTIMATES FOR GRADIENT YAMABE SOLITONS
    Chu, Yawei
    Wang, Xue
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) : 246 - 257