Calculation of resident groundwater concentration by post-processing particle-tracking results

被引:0
|
作者
Scott L. Painter
Bruce A. Robinson
Zora V. Dash
机构
[1] Los Alamos National Laboratory,Computational Earth Sciences Group, Earth and Environmental Sciences Division
[2] Los Alamos National Laboratory,Civilian Nuclear Energy Program Office
来源
Computational Geosciences | 2013年 / 17卷
关键词
Particle tracking; Contaminant transport; Radionuclide transport;
D O I
暂无
中图分类号
学科分类号
摘要
A post-processing technique that allows relatively simple random walk particle-tracking results to be extrapolated to transport scenarios of considerably more complexity has traditionally been used to calculate flux at specified monitoring locations. Previous extensions of the post-processing approach to calculate resident groundwater concentrations could not disentangle concentrations of mobile and immobile mass in dual-porosity systems, which limited their utility. A variant of the post-processing method that allows for the calculation of resident concentrations of mobile and immobile mass is introduced and tested. The resulting combination of methods—random walk particle tracking without retention processes followed by post-processing to add the effects of retention—is a powerful and practical strategy for assessing the transport of radionuclides or other contaminants in field-scale applications.
引用
收藏
页码:189 / 196
页数:7
相关论文
共 50 条
  • [31] Post-processing method using ellipsoidal equation for particle tracking velocimetry measurement results (extension to unsteady flow/mismatched vector detection/application to experimental data)
    Murai, Y
    Ido, T
    Yamamoto, F
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2002, 45 (01) : 142 - 149
  • [32] Chebyshev spectral method and Chebyshev noise processing procedure for vorticity calculation in PIV post-processing
    Dong, SC
    Meng, H
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2001, 24 (1-2) : 47 - 59
  • [33] Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results
    Korun, M.
    Vodenik, B.
    Zorko, B.
    APPLIED RADIATION AND ISOTOPES, 2018, 133 : 22 - 30
  • [34] Post-processing the VLTI fringe-tracking data: first measurements of stars
    Le Bouquin, J. -B.
    Abuter, R.
    Haguenauer, P.
    Bauvir, B.
    Popovic, D.
    Pozna, E.
    ASTRONOMY & ASTROPHYSICS, 2009, 493 (02): : 747 - 752
  • [35] A framework for post-processing bird tracks from automated tracking radar systems
    van Erp, Jens A.
    van Loon, Emiel E.
    De Groeve, Johannes
    Bradaric, Maja
    Shamoun-Baranes, Judy
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (01): : 130 - 143
  • [36] Post-processing of stereoreconstruction results as recovery of hidden Markov field parameters
    Ryabokon', D.I.
    Upravlyayushchie Sistemy i Mashiny, 2003, (04): : 56 - 62
  • [37] Making clusterings fairer by post-processing: algorithms, complexity results and experiments
    Ian Davidson
    Zilong Bai
    Cindy Mylinh Tran
    S. S. Ravi
    Data Mining and Knowledge Discovery, 2023, 37 : 1404 - 1440
  • [38] Making clusterings fairer by post-processing: algorithms, complexity results and experiments
    Davidson, Ian
    Bai, Zilong
    Tran, Cindy Mylinh
    Ravi, S. S.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (04) : 1404 - 1440
  • [39] Methods of Machine-Readable Zone Recognition Results Post-Processing
    Petrova, Olga
    Bulatov, Konstantin
    ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041
  • [40] Semantic Analytical Reports: A Framework for Post-processing Data Mining Results
    Kliegr, Tomas
    Ralbovsky, Martin
    Svatek, Vojtech
    Simunek, Milan
    Jirkovsky, Vojtech
    Nemrava, Jan
    Zemanek, Jan
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2009, 5722 : 88 - +