Information scrambling and entanglement in quantum approximate optimization algorithm circuits

被引:0
|
作者
Chen Qian
Wei-Feng Zhuang
Rui-Cheng Guo
Meng-Jun Hu
Dong E. Liu
机构
[1] Beijing Academy of Quantum Information Sciences,State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics
[2] Tsinghua University,undefined
[3] Frontier Science Center for Quantum Information,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variational quantum algorithms, which consist of optimal parameterized quantum circuits, are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era. Apart from classical computational resources, different kinds of quantum resources have their contributions in the process of computing, such as information scrambling and entanglement. Characterizing the relation between complexity of specific problems and quantum resources consumed by solving these problems is helpful for us to understand the structure of VQAs in the context of quantum information processing. In this work, we focus on the quantum approximate optimization algorithm (QAOA), which aims to solve combinatorial optimization problems. We study information scrambling and entanglement in QAOA circuits, respectively, and discover that for a harder problem, more quantum resource is required for the QAOA circuit to obtain the solution in most of the cases. We note that in the future, our results can be used to benchmark complexity of quantum many-body problems by information scrambling or entanglement accumulation in the computing process.
引用
收藏
相关论文
共 50 条
  • [1] Information scrambling and entanglement in quantum approximate optimization algorithm circuits
    Qian, Chen
    Zhuang, Wei-Feng
    Guo, Rui-Cheng
    Hu, Meng-Jun
    Liu, Dong E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (01):
  • [2] Entanglement perspective on the quantum approximate optimization algorithm
    Dupont, Maxime
    Didier, Nicolas
    Hodson, Mark J.
    Moore, Joel E.
    Reagor, Matthew J.
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [3] Information scrambling in quantum circuits
    Mi, Xiao
    Roushan, Pedram
    Quintana, Chris
    Mandra, Salvatore
    Marshall, Jeffrey
    Neill, Charles
    Arute, Frank
    Arya, Kunal
    Atalaya, Juan
    Babbush, Ryan
    Bardin, Joseph C.
    Barends, Rami
    Basso, Joao
    Bengtsson, Andreas
    Boixo, Sergio
    Bourassa, Alexandre
    Broughton, Michael
    Buckley, Bob B.
    Buell, David A.
    Burkett, Brian
    Bushnell, Nicholas
    Chen, Zijun
    Chiaro, Benjamin
    Collins, Roberto
    Courtney, William
    Demura, Sean
    Derk, Alan R.
    Dunsworth, Andrew
    Eppens, Daniel
    Erickson, Catherine
    Farhi, Edward
    Fowler, Austin G.
    Foxen, Brooks
    Gidney, Craig
    Giustina, Marissa
    Gross, Jonathan A.
    Harrigan, Matthew P.
    Harrington, Sean D.
    Hilton, Jeremy
    Ho, Alan
    Hong, Sabrina
    Huang, Trent
    Huggins, William J.
    Ioffe, L. B.
    Isakov, Sergei, V
    Jeffrey, Evan
    Jiang, Zhang
    Jones, Cody
    Kafri, Dvir
    Kelly, Julian
    SCIENCE, 2021, 374 (6574) : 1479 - +
  • [4] Quantum information scrambling and entanglement in bipartite quantum states
    Sharma, Kapil K.
    Gerdt, Vladimir P.
    QUANTUM INFORMATION PROCESSING, 2021, 20 (06)
  • [5] Quantum information scrambling and entanglement in bipartite quantum states
    Kapil K. Sharma
    Vladimir P. Gerdt
    Quantum Information Processing, 2021, 20
  • [7] Information scrambling versus quantum revival through the lens of operator entanglement
    Goto, Kanato
    Mollabashi, Ali
    Nozaki, Masahiro
    Tamaoka, Kotaro
    Tan, Mao Tian
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [8] Information scrambling versus quantum revival through the lens of operator entanglement
    Kanato Goto
    Ali Mollabashi
    Masahiro Nozaki
    Kotaro Tamaoka
    Mao Tian Tan
    Journal of High Energy Physics, 2022
  • [9] New coding scheme to compile circuits for Quantum Approximate Optimization Algorithm by genetic evolution
    Arufe, Lis
    Rasconi, Riccardo
    Oddi, Angelo
    Varela, Ramiro
    Gonzalez, Miguel A.
    APPLIED SOFT COMPUTING, 2023, 144
  • [10] Dynamic adaptive quantum approximate optimization algorithm for shallow, noise-resilient circuits
    Yanakiev, Nikola
    Mertig, Normann
    Long, Christopher K.
    Arvidsson-Shukur, David R. M.
    PHYSICAL REVIEW A, 2024, 109 (03)