Equivariant Symbol Calculus for Differential Operators Acting on Forms

被引:0
|
作者
F. Boniver
S. Hansoul
P. Mathonet
N. Poncin
机构
[1] Université de Liège,Département de Mathématique
来源
关键词
Casamir operators; classification; equivariant symbol calculus; modules of differential operators;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence and uniqueness of a projectively equivariant symbol map (in the sense of Lecomte and Ovsienko) for the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}_p$$ \end{document} of differential operators transforming p-forms into functions, over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^n$$ \end{document}. As an application, we classify the Vect(M)-equivariant maps from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}_p$$ \end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}_q$$ \end{document} over a smooth manifold M, recovering and improving earlier results of N.Poncin. This provides the complete answer to a question raised by P. Lecomte about the extension of a certain intrinsic homotopy operator.
引用
收藏
页码:219 / 232
页数:13
相关论文
共 50 条