Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells

被引:0
|
作者
Donghui Li
Chuanhang Guo
Xue Zhang
Baocai Du
Cong Yu
Pang Wang
Shili Cheng
Liang Wang
Jinlong Cai
Hui Wang
Dan Liu
Huifeng Yao
Yanming Sun
Jianhui Hou
Tao Wang
机构
[1] Wuhan University of Technology,School of Materials Science and Engineering
[2] Chinese Academy of Sciences,State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry
[3] University of Chinese Academy of Sciences,School of Chemistry
[4] Beihang University,undefined
来源
Science China Chemistry | 2022年 / 65卷
关键词
non-fullerene acceptors; pre-aggregate; pseudo-bulk heterojunction; organic solar cells;
D O I
暂无
中图分类号
学科分类号
摘要
Pseudo-bulk heterojunction (BHJ) fabricated by sequential casting of donor and acceptor layers has been recently demonstrated a superior structure to prepare organic solar cells (OSCs) with enhanced efficiency compared to the conventional BHJ OSCs cast from a common solution of donor and acceptor. However, molecular diffusion and aggregation within the pseudo-BHJ layer bring great challenges to fully realize the advantage of pseudo-BHJ structure. Herein, a solution-incubated pre-aggregation strategy is employed to tune the nanoscale aggregates of non-fullerene acceptor (NFA) BTP-eC11 and N3 to substantially enhance device power-conversion efficiency (PCE). NFA pre-aggregates are incubated in solutions via aging or adding anti-solvent, and then sequentially cast onto D18 fibrillar network, which then penetrate to form a pseudo-BHJ structure with appropriate domain sizes to ensure superior charge mobilities. While the conventional pseudo-BHJ OSCs obtain inferior PCEs below 17% compared with normal BHJ OSCs, NFA pre-aggregates help to achieve remarkable PCEs of 17.7% and 17.5% for D18/BTP-eC11 and D18/N3 pseudo-BHJ OSCs. This work demonstrates that the solution-incubated nanoscale pre-aggregation is an efficient approach to regulate molecular diffusion and aggregation to guarantee high performance pseudo-BHJ OSCs. [graphic not available: see fulltext]
引用
收藏
页码:373 / 381
页数:8
相关论文
共 50 条
  • [31] Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells
    Ding, Yunqian
    Zhang, Xin
    Feng, Huanran
    Ke, Xin
    Meng, Lingxian
    Sun, Yanna
    Guo, Ziqi
    Cai, Yao
    Jiao, Cancan
    Wan, Xiangjian
    Li, Chenxi
    Zheng, Nan
    Xie, Zengqi
    Chen, Yongsheng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) : 27425 - 27432
  • [32] An oxygen heterocycle-fused fluorene based non-fullerene acceptor for high efficiency organic solar cells
    Ke, Xin
    Meng, Lingxian
    Wan, Xiangjian
    Sun, Yanna
    Guo, Ziqi
    Wu, Simin
    Zhang, Hongtao
    Li, Chenxi
    Chen, Yongsheng
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (12) : 3594 - 3601
  • [33] Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells
    Safakath Karuthedath
    Julien Gorenflot
    Yuliar Firdaus
    Neha Chaturvedi
    Catherine S. P. De Castro
    George T. Harrison
    Jafar I. Khan
    Anastasia Markina
    Ahmed H. Balawi
    Top Archie Dela Peña
    Wenlan Liu
    Ru-Ze Liang
    Anirudh Sharma
    Sri H. K. Paleti
    Weimin Zhang
    Yuanbao Lin
    Erkki Alarousu
    Sergei Lopatin
    Dalaver H. Anjum
    Pierre M. Beaujuge
    Stefaan De Wolf
    Iain McCulloch
    Thomas D. Anthopoulos
    Derya Baran
    Denis Andrienko
    Frédéric Laquai
    Nature Materials, 2021, 20 : 378 - 384
  • [34] Unraveling the Role of Non-Fullerene Acceptor with High Dielectric Constant in Organic Solar Cells
    Zhang, Yue
    He, Yakun
    Zeng, Liang
    Lueer, Larry
    Deng, Wanyuan
    Chen, Yuting
    Zhou, Jiadong
    Wang, Zhiqiang
    Brabec, Christoph J.
    Wu, Hongbin
    Xie, Zengqi
    Duan, Chunhui
    SMALL, 2023, 19 (30)
  • [35] Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells
    Karuthedath, Safakath
    Gorenflot, Julien
    Firdaus, Yuliar
    Chaturvedi, Neha
    De Castro, Catherine S. P.
    Harrison, George T.
    Khan, Jafar I.
    Markina, Anastasia
    Balawi, Ahmed H.
    Pena, Top Archie Dela
    Liu, Wenlan
    Liang, Ru-Ze
    Sharma, Anirudh
    Paleti, Sri H. K.
    Zhang, Weimin
    Lin, Yuanbao
    Alarousu, Erkki
    Anjum, Dalaver H.
    Beaujuge, Pierre M.
    De Wolf, Stefaan
    McCulloch, Iain
    Anthopoulos, Thomas D.
    Baran, Derya
    Andrienko, Denis
    Laquai, Frederic
    NATURE MATERIALS, 2021, 20 (03) : 378 - +
  • [36] Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells
    Li, Mingpeng
    Liang, Huazhe
    Jiang, Changzun
    Huang, Fangfang
    Wang, Jian
    Yang, Yang
    Wan, Xiangjian
    Li, Chenxi
    Yao, Zhaoyang
    Chen, Yongsheng
    Organic Electronics, 2022, 106
  • [37] Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells
    Li, Mingpeng
    Liang, Huazhe
    Jiang, Changzun
    Huang, Fangfang
    Wang, Jian
    Yang, Yang
    Wan, Xiangjian
    Li, Chenxi
    Yao, Zhaoyang
    Chen, Yongsheng
    ORGANIC ELECTRONICS, 2022, 106
  • [38] Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells
    Jones, Austin L.
    Zheng, Zilong
    Riley, Parand
    Pelse, Ian
    Zhang, Junxiang
    Abdelsamie, Maged
    Toney, Michael F.
    Marder, Seth R.
    So, Franky
    Bredas, Jean-Luc
    Reynolds, John R.
    CHEMISTRY OF MATERIALS, 2019, 31 (23) : 9729 - 9741
  • [39] Recent progress on non-fullerene acceptor materials for organic solar cells
    Wu, Qing
    Ding, Sha
    Sun, Aokui
    Xia, Yong
    MATERIALS TODAY CHEMISTRY, 2024, 41
  • [40] A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells
    Schwenn, Paul E.
    Gui, K.
    Nardes, Alexandre M.
    Krueger, Karsten B.
    Lee, Kwan H.
    Mutkins, Karyn
    Rubinstein-Dunlop, Halina
    Shaw, Paul E.
    Kopidakis, Nikos
    Burn, Paul L.
    Meredith, Paul
    ADVANCED ENERGY MATERIALS, 2011, 1 (01) : 73 - 81