Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions

被引:0
|
作者
I. T. Habibullin
机构
[1] Mathematical Institute,Ufa Science Center
来源
关键词
Boundary Condition; Initial Data; Linear Equation; Discrete Spectrum; Initial Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Korteweg–de Vries equation on the semiaxis with zero boundary conditions at x = 0 and arbitrary smooth decreasing initial data. We show that the problem can be effectively integrated by the inverse scattering transform method if the associated linear equation has no discrete spectrum. Under these assumptions, we prove the global solvability of the problem.
引用
收藏
页码:25 / 44
页数:19
相关论文
共 50 条
  • [21] An initial boundary value problem for the Boussinesq equation in a Trapezoid
    Jenaliyev, M. T.
    Kassymbekova, A. S.
    Yergaliyev, M. G.
    Assetov, A. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 106 (02): : 117 - 127
  • [22] Boundary value problem for the KdV-Burgers equation in a quarter plane
    You, Shujun
    Huang, Jianhua
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 142 : 318 - 327
  • [23] ON SOLVING PARABOLIC EQUATION WITH HOMOGENEOUS BOUNDARY AND INTEGRAL INITIAL CONDITIONS
    Ignjatovic, Mladen
    MATEMATICKI VESNIK, 2015, 67 (04): : 258 - 268
  • [24] Finding the unknown boundary in the initial boundary-value problem for the heat equation
    Golovina S.G.
    Razborov A.G.
    Computational Mathematics and Modeling, 2009, 20 (3) : 231 - 236
  • [25] A non-homogeneous boundary-value problem for the KdV-Burgers equation posed on a finite domain
    You, Shujun
    Guo, Boling
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 155 - 159
  • [26] NUMERICAL SOLUTION OF THE INITIAL BOUNDARY VALUE PROBLEM WITH VACUUM BOUNDARY CONDITIONS FOR THE MAGNETIC FIELD INDUCTION EQUATION IN A BALL
    Bychin, I., V
    Gorelikov, A., V
    Ryakhovskii, A., V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2020, (64): : 15 - 30
  • [27] On the homogeneous boundary value problem for the heat equation in the degenerate domain
    Kosmakova, M. T.
    Mizambaeva, M. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 65 (01): : 61 - 66
  • [28] NONTRIVIAL HOMOGENEOUS BOUNDARY-VALUE PROBLEM OF THE LAPLACE EQUATION
    CAP, FF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (10): : 284 - 284
  • [29] INITIAL-BOUNDARY VALUE PROBLEM FOR A RADIATIVE TRANSFER EQUATION WITH GENERALIZED MATCHING CONDITIONS
    Kim, A.
    Prokhorov, I., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1036 - 1056
  • [30] On a solution of a boundary-value problem for a hyperbolic equation on a disk with random initial conditions
    Oliinyk A.O.
    Ukrainian Mathematical Journal, 2000, 52 (3) : 470 - 478