Predicting multivariate time series in real time with confidence intervals: Applications to renewable energy

被引:0
|
作者
Yoshito Hirata
Kazuyuki Aihara
Hideyuki Suzuki
机构
[1] Institute of Industrial Science,Department of Mathematical Informatics
[2] The University of Tokyo,undefined
[3] Graduate School of Information Science and Technology,undefined
[4] The University of Tokyo,undefined
[5] CREST,undefined
[6] JST,undefined
关键词
Prediction Error; Wind Turbine; European Physical Journal Special Topic; Japan Meteorological Agency; Multivariate Time Series;
D O I
暂无
中图分类号
学科分类号
摘要
We extend our earlier work on predicting a univariate time series in real time with confidence intervals (Hirata, et al., Renew. Energy 67, 35 (2014)) to a multivariate time series. We realize this extension by using the “p-norm” where p is smaller than 1. We compare the performance when p is 0.5 with that when p is 2 using solar irradiation data and wind data measured all over Japan.
引用
收藏
页码:2451 / 2460
页数:9
相关论文
共 50 条
  • [41] Development of a Real-Time Testing Environment for Battery Energy Storage Systems in Renewable Energy Applications
    Hill, Cody
    Chen, Dongmei
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [42] Robust bootstrap prediction intervals for univariate and multivariate autoregressive time series models
    Beyaztas, Ufuk
    Shang, Han Lin
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (05) : 1179 - 1202
  • [43] Model selection, confidence and scaling in predicting chaotic time-series
    Bollt, EM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (06): : 1407 - 1422
  • [44] On the Construction of Bootstrap Confidence Intervals for Estimating the Correlation Between Two Time Series Not Sampled on Identical Time Points
    Mario Trottini
    Isabel Vigo
    Juan A. Vargas-Alemañy
    David García-García
    José Fernández
    Mathematical Geosciences, 2021, 53 : 1813 - 1840
  • [45] On the Construction of Bootstrap Confidence Intervals for Estimating the Correlation Between Two Time Series Not Sampled on Identical Time Points
    Trottini, Mario
    Vigo, Isabel
    Vargas-Alemany, Juan A.
    Garcia-Garcia, David
    Fernandez, Jose
    MATHEMATICAL GEOSCIENCES, 2021, 53 (08) : 1813 - 1840
  • [46] REAL-TIME SYNCHRONIZATION IN NEURAL NETWORKS FOR MULTIVARIATE TIME SERIES ANOMALY DETECTION
    Abdulaal, Ahmed
    Lancewicki, Tomer
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3570 - 3574
  • [47] Detecting novelties in time series through neural networks forecasting with robust confidence intervals
    Oliveira, Adriano L. I.
    Meira, Silvio R. L.
    NEUROCOMPUTING, 2006, 70 (1-3) : 79 - 92
  • [48] CI2 for creating and comparing confidence -intervals for time -series bivariate plots
    Mullineaux, David R.
    GAIT & POSTURE, 2017, 52 : 367 - 373
  • [49] Subsampling confidence intervals for parameters of atmospheric time series: block size choice and calibration
    Gluhovsky, A
    Zihlbauer, M
    Politis, DN
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (05) : 381 - 389
  • [50] An Evolving Multivariate Time Series Compression Algorithm for IoT Applications
    Costa, Hagi
    Silva, Marianne
    Sanchez-Gendriz, Ignacio
    Viegas, Carlos M. D.
    Silva, Ivanovitch
    SENSORS, 2024, 24 (22)