Single-atom catalysts modified by molecular groups for electrochemical nitrogen reduction

被引:0
|
作者
Zengxi Wei
Yuchang Liu
Hongjie Liu
Shaopeng Wang
Minchen Hou
Liwei Wang
Dong Zhai
Shuangliang Zhao
Kefu Yu
Shaolong Zhang
机构
[1] Guangxi University,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering
[2] Guangxi University,School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea
[3] Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,MOE Key Laboratory of New Processing Technology for Non
[4] Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),ferrous Metals and Materials
[5] Shenzhen University,College of Chemistry and Environmental Engineering
[6] Shandong University,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science
来源
Nano Research | 2022年 / 15卷
关键词
ammonia; nitrogen reduction reaction; single-atom catalysts (SACs); molecular groups; density functional theory (DFT) calculations;
D O I
暂无
中图分类号
学科分类号
摘要
Electrochemical nitrogen reduction reaction (eNRR) is one of the most important chemical reactions for the production of ammonia under ambient environment. However, the lack of in-depth understanding of the structure-activity relationship impedes the development of high-performance catalysts for ammonia production. Herein, the density functional theory (DFT) calculations are performed to reveal the structure-activity relationship for the single-atom catalysts (SACs) supported on g-C3N4, which is modified by molecular groups (i.e., H, O, and OH). The computational results demonstrate that the W-based SACs are beneficial to produce ammonia with a low limiting potential (UL). Particularly, the W-OH@g-C3N4 catalyst exhibits an ultralow UL of −0.22 V for eNRR. And the competitive eNRR selectivity can be identified by the dominant *N2 adsorption free energy than that of *H. Our findings provide a theoretical basis for the synthesis of efficient catalysts to produce ammonia.
引用
收藏
页码:9663 / 9669
页数:6
相关论文
共 50 条
  • [31] Single-atom catalysts for electrochemical energy storage and conversion
    Ma, Wei
    Wan, Hao
    Zhang, Lili
    Zheng, Jin You
    Zhou, Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 170 - 194
  • [32] Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Zhao, Chuan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [33] Single-atom catalysts for electrochemical energy storage and conversion
    Wei Ma
    Hao Wan
    Lili Zhang
    Jin You Zheng
    Zhen Zhou
    Journal of Energy Chemistry, 2021, 63 (12) : 170 - 194
  • [34] Single-atom catalysts toward electrochemical water treatment
    Zhang, Xiuwu
    Li, Shuaishuai
    Zhao, Guohua
    Zhao, Hongying
    Zhou, Minghua
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 363
  • [35] Single-atom catalysts enabled electrochemical sensing for glucose
    Yan, Muyu
    Xiong, Can
    Han, Xiao
    Xue, Zhenggang
    Wu, Yuen
    BIOSENSORS & BIOELECTRONICS, 2025, 273
  • [36] Single-atom catalysts for electrochemical energy storage and conversion
    Ma, Wei
    Wan, Hao
    Zhang, Lili
    Zheng, Jin You
    Zhou, Zhen
    Journal of Energy Chemistry, 2021, 63 : 170 - 194
  • [37] Single-Atom Catalysts of Precious Metals for Electrochemical Reactions
    Kim, Jiwhan
    Kim, Hee-Eun
    Lee, Hyunjoo
    CHEMSUSCHEM, 2018, 11 (01) : 104 - 113
  • [38] Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
    Chen, Yuanjun
    Ji, Shufang
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    JOULE, 2018, 2 (07) : 1242 - 1264
  • [39] Predicting the Stability of Single-Atom Catalysts in Electrochemical Reactions
    Di Liberto, Giovanni
    Giordano, Livia
    Pacchioni, Gianfranco
    ACS CATALYSIS, 2023, 14 (01) : 45 - 55
  • [40] Strain Engineering of Single-Atom Catalysts for Electrochemical Conversion
    Ni, Youxuan
    Lu, Yong
    Xie, Weiwei
    Chen, Jun
    CHEMELECTROCHEM, 2025, 12 (01):