Labelled oriented graph groups and crossed modules

被引:0
|
作者
N. D. Gilbert
机构
[1] Heriot-Watt University,School of Mathematical and Computer Sciences and the Maxwell Institute for the Mathematical Sciences
来源
Archiv der Mathematik | 2017年 / 108卷
关键词
Group presentation; Labelled oriented graph; Homology; Primary 20L05; Secondary 20M18; 20M30;
D O I
暂无
中图分类号
学科分类号
摘要
A labelled oriented graph (LOG) group is a group given by a presentation constructed in a certain way from a labelled oriented graph: examples include Wirtinger presentations of knot groups. We show how to obtain generators for the Schur Multiplier H2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2(G)$$\end{document} of a LOG group from the underlying LOG, and by exhibiting the n-string braid group Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document} as a LOG group, we compute H2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2(B_n)$$\end{document}.
引用
收藏
页码:365 / 371
页数:6
相关论文
共 50 条