Crossed Modules and Quantum Groups in Braided Categories

被引:0
|
作者
Yu. N. Bespalov
机构
[1] Institute for Theoretical Physics,
来源
关键词
braided category; braided Hopf algebra; crossed module; quantum braided group;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a Hopf algebra in a braided category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document}. Crossed modules over A are introduced and studied as objects with both module and comodule structures satisfying a compatibility condition. The category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}\mathcal{Y}\left( \mathcal{C} \right)_A^A $$ \end{document} of crossed modules is braided and is a concrete realization of a known general construction of a double or center of a monoidal category. For a quantum braided group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {A,\bar A,\mathcal{R}} \right)$$ \end{document} the corresponding braided category of modules \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}_{\mathcal{O}\left( {A,\bar A} \right)} $$ \end{document} is identified with a full subcategory in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}\mathcal{Y}\left( \mathcal{C} \right)_A^A $$ \end{document}. The connection with cross products is discussed and a suitable cross product in the class of quantum braided groups is built. Majid–Radford theorem, which gives equivalent conditions for an ordinary Hopf algebra to be such a cross product, is generalized to the braided category. Majid's bosonization theorem is also generalized.
引用
收藏
页码:155 / 204
页数:49
相关论文
共 50 条