Insulator band gap in single-side-hydrogenated graphene nanoribbons

被引:0
|
作者
L. A. Openov
A. I. Podlivaev
机构
[1] National Research Nuclear University “MEPhI”,
来源
Semiconductors | 2012年 / 46卷
关键词
Density Functional Theory; High Occupied Molecular Orbital; Lower Unoccupied Molecular Orbital; High Occupied Molecular Orbital; Lower Unoccupied Molecular Orbital;
D O I
暂无
中图分类号
学科分类号
摘要
The insulator band gap Eg of graphene nanoribbons, one side of which is completely coated with hydrogen, is calculated numerically. It is shown that Eg is ∼1.5 eV narrower than the band gap in graphane nanoribbons with the same width w and steadily increases with decreasing w. As in graphane nanoribbons, the atomic structure of nanoribbon edges has virtually no effect on the value of Eg.
引用
收藏
页码:199 / 202
页数:3
相关论文
共 50 条
  • [31] Toward Cove-Edged Low Band Gap Graphene Nanoribbons
    Liu, Junzhi
    Li, Bo-Wei
    Tan, Yuan-Zhi
    Giannakopoulos, Angelos
    Sanchez-Sanchez, Carlos
    Beljonne, David
    Ruffieux, Pascal
    Fasel, Roman
    Feng, Xinliang
    Muellen, Klaus
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (18) : 6097 - 6103
  • [32] Origin of multiple band gap values in single width nanoribbons
    Goyal, Deepika
    Kumar, Shailesh
    Shukla, Alok
    Kumar, Rakesh
    SCIENTIFIC REPORTS, 2016, 6
  • [33] Origin of multiple band gap values in single width nanoribbons
    Shailesh Deepika
    Alok Kumar
    Rakesh Shukla
    Scientific Reports, 6
  • [34] Gapless insulator and a band gap scaling law in semihydrogenated graphene
    Wright, A. R.
    O'Brien, T. E.
    Beaven, D.
    Zhang, C.
    APPLIED PHYSICS LETTERS, 2010, 97 (04)
  • [35] Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence
    Gao, Haili
    Wang, Lu
    Zhao, Jijun
    Ding, Feng
    Lu, Jianping
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (08): : 3236 - 3242
  • [36] Tunable Band Gap in Hydrogenated Quasi-Free-standing Graphene
    Haberer, D.
    Vyalikh, D. V.
    Taioli, S.
    Dora, B.
    Farjam, M.
    Fink, J.
    Marchenko, D.
    Pichler, T.
    Ziegler, K.
    Simonucci, S.
    Dresselhaus, M. S.
    Knupfer, M.
    Buechner, B.
    Grueneis, A.
    NANO LETTERS, 2010, 10 (09) : 3360 - 3366
  • [37] Coulomb gap in graphene nanoribbons
    Droescher, S.
    Knowles, H.
    Meir, Y.
    Ensslin, K.
    Ihn, T.
    PHYSICAL REVIEW B, 2011, 84 (07):
  • [38] Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons
    Choe, D. H.
    Bang, Junhyeok
    Chang, K. J.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [39] Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons
    Lin, Ming-Wei
    Ling, Cheng
    Agapito, Luis A.
    Kioussis, Nicholas
    Zhang, Yiyang
    Cheng, Mark Ming-Cheng
    Wang, Wei L.
    Kaxiras, Efthimios
    Zhou, Zhixian
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [40] Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons
    Li, Shilong
    Ren, Zhaoyu
    Zheng, Jiming
    Zhou, Yixuan
    Wan, Yun
    Hao, Ling
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (03)