Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

被引:0
|
作者
Xiaohong Song
Cheng Lin
Zhihao Sheng
Peng Liu
Zhangjin Chen
Weifeng Yang
Shilin Hu
C. D. Lin
Jing Chen
机构
[1] College of Science,Department of Physics
[2] Shantou University,Physics Department
[3] HEDPS,undefined
[4] Center for Applied Physics and Technology,undefined
[5] Peking University,undefined
[6] Institute of Applied Physics and Computational Mathematics,undefined
[7] J.R.Macdonald Laboratory,undefined
[8] Kansas State University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
引用
收藏
相关论文
共 50 条
  • [21] Coulomb-corrected quantum trajectories in strong-field ionization
    Popruzhenko, S. V.
    Paulus, G. G.
    Bauer, D.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [22] Persistence of Coulomb focusing during ionization in the strong-field regime
    Berman, S. A.
    Chandre, C.
    Uzer, T.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [23] Nonadiabatic strong-field ionization of aligned N2 molecules
    Li, Zichen
    Ge, Peipei
    Yan, Jiaqing
    Xie, Wenhai
    Liu, Yang
    Liu, Yupeng
    Liu, Weibin
    Liu, Kunlong
    Zhou, Yueming
    Li, Min
    Lu, Peixiang
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [24] Near-threshold photoelectron holography beyond the strong-field approximation
    Lai, XuanYang
    Yu, ShaoGang
    Huang, YiYi
    Hua, LinQiang
    Gong, Cheng
    Quan, Wei
    Faria, C. Figueira de Morisson
    Liu, XiaoJun
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [25] Influence of wavelength on nonadiabatic effects in circularly polarized strong-field ionization
    Yuan, MingHu
    Zhao, GuangJiu
    Liu, HongPing
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [26] Photoelectron spectra in strong-field ionization by a high-frequency field
    Bondar, Denys I.
    Spanner, Michael
    Liu, Wing-Ki
    Yudin, Gennady L.
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [27] Signatures of the continuum electron phase in molecular strong-field photoelectron holography
    Meckel M.
    Staudte A.
    Patchkovskii S.
    Villeneuve D.M.
    Corkum P.B.
    Dörner R.
    Spanner M.
    Spanner, M. (michael.spanner@nrc.ca), 1600, Nature Publishing Group (10): : 594 - 600
  • [28] Visualization of subcycle nonadiabatic-nondipole coupling in strong-field ionization
    Mao, Xiaodan
    Ni, Hongcheng
    Wu, Jian
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [29] Signatures of the continuum electron phase in molecular strong-field photoelectron holography
    Meckel, M.
    Staudte, A.
    Patchkovskii, S.
    Villeneuve, D. M.
    Corkum, P. B.
    Doerner, R.
    Spanner, M.
    NATURE PHYSICS, 2014, 10 (08) : 594 - 600
  • [30] Semiclassical trajectory perspective of glory rescattering in strong-field photoelectron holography
    Liao, L. G.
    Xia, Q. Z.
    Cai, J.
    Liu, J.
    PHYSICAL REVIEW A, 2022, 105 (05)