Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network

被引:0
|
作者
Ali Komeilibirjandi
Amir Hossein Raffiee
Akbar Maleki
Mohammad Alhuyi Nazari
Mostafa Safdari Shadloo
机构
[1] Technical University of Munich,Department of Civil, Geo and Environmental Engineering
[2] Purdue University,School of Mechanical Engineering
[3] Shahrood University of Technology,Faculty of Mechanical Engineering
[4] University of Tehran,Department of Renewable Energies, Faculty of New Science and Technologies
[5] CNRS University and INSA of Rouen,CORIA
关键词
Nanofluid; GMDH; Thermal conductivity; Artificial neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Nanofluids are employed in different thermal devices due to their enhanced thermophysical features which lead to noticeable heat transfer augmentation. One of the major reasons of the heat transfer improvement by using the nanofluids is their increased thermal conductivity. Several methods have been applied to estimate this property of nanofluids such as correlations and artificial neural networks (ANNs). In the present paper, group method of data handling (GMDH) and a mathematical correlation are proposed for forecasting the thermal conductivity of nanofluids containing CuO nanoparticles. The inputs of the both models are the base fluids’ thermal conductivities, concentration, temperature and nanoparticle dimension. Comparison of the forecasted data by these two approaches revealed more favorable performance of GMDH. The values of R-squared in the cases where polynomial and ANN were utilized were 0.9862 and 0.9996, respectively. Moreover, the average absolute relative deviation values were 5.25% and 0.881% for the indicated methods, respectively. According to these statistical values, it is concluded that employing the ANN-based regression leads to more confident model for forecasting the TC of the nanofluids containing CuO nanoparticles.
引用
收藏
页码:2679 / 2689
页数:10
相关论文
共 50 条
  • [21] Prediction of thermal conductivity detection response factors using an artificial neural network
    Jalali-Heravi, M
    Fatemi, MH
    JOURNAL OF CHROMATOGRAPHY A, 2000, 897 (1-2) : 227 - 235
  • [22] Measurement and Prediction of Thermal Conductivity of Nanofluids Containing TiO2 Nanoparticles
    Verma, Kamalesh
    Agarwal, Ravi
    Duchaniya, R. K.
    Singh, Ramvir
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (02) : 1068 - 1075
  • [23] Modeling of thermal diffusivity of nanofluids using artificial neural network
    Yousefi, Fakhri
    Parsazadeh, Nadieh
    HIGH TEMPERATURES-HIGH PRESSURES, 2017, 46 (06) : 459 - 480
  • [24] Artificial neural network for prediction of thermal conductivity of rGO-metal oxide nanocomposite-based nanofluids
    Barai, Divya P.
    Bhanvase, Bharat A.
    Pandharipande, Shekhar L.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (01): : 271 - 282
  • [25] Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS
    Maleki, Akbar
    Elahi, Milad
    Assad, Mamdouh El Haj
    Nazari, Mohammad Alhuyi
    Shadloo, Mostafa Safdari
    Nabipour, Narjes
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (06) : 4261 - 4272
  • [26] Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS
    Akbar Maleki
    Milad Elahi
    Mamdouh El Haj Assad
    Mohammad Alhuyi Nazari
    Mostafa Safdari Shadloo
    Narjes Nabipour
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 4261 - 4272
  • [27] Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks
    Ariana, M. A.
    Vaferi, B.
    Karimi, G.
    POWDER TECHNOLOGY, 2015, 278 : 1 - 10
  • [28] Effective thermal conductivity of nanofluids containing spherical nanoparticles
    Ren, Yajie
    Xie, Huaqing
    Cai, An
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (21) : 3958 - 3961
  • [29] The thermal conductivity of aqueous nanofluids containing ceria nanoparticles
    Beck, Michael P.
    Yuan, Yanhui
    Warrier, Pramod
    Teja, Amyn S.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (06)
  • [30] EFFECTIVE THERMAL CONDUCTIVITY OF NANOFLUIDS CONTAINING CYLINDRICAL NANOPARTICLES
    Sabbaghzadeh, Jamshid
    Ebrahimi, Sadollah
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2007, 6 (01) : 45 - 49