On Global Optimality Conditions for Nonlinear Optimal Control Problems

被引:0
|
作者
F.H. Clarke
J.-B. Hiriart-Urruty
Yu.S. Ledyaev
机构
[1] Institut Desargues,
[2] Université Lyon I (Bâtiment 101),undefined
[3] Université Paul Sabatier,undefined
[4] Steklov Institute of Mathematics,undefined
来源
关键词
Optimal control; Pontryagin maximum principle; Global optimality;
D O I
暂无
中图分类号
学科分类号
摘要
Let a trajectory and control pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} maximize globally the functional g(x(T)) in the basic optimal control problem. Then (evidently) any pair (x,u) from the level set of the functional g corresponding to the value g(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document}(T)) is also globally optimal and satisfies the Pontryagin maximum principle. It is shown that this necessary condition for global optimality of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} turns out to be a sufficient one under the additional assumption of nondegeneracy of the maximum principle for every pair (x,u) from the above-mentioned level set. In particular, if the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} satisfies the Pontryagin maximum principle which is nondegenerate in the sense that for the Hamiltonian H, we have along the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {{\text{max}}}\limits_u {\text{ }}H$$ \end{document}≢\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {{\text{min}}}\limits_u {\text{ }}H$$ \end{document} on [0,T], and if there is no another pair (x,u) such that g(x(T))=g(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document}(T)), then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} is a global maximizer.
引用
收藏
页码:109 / 122
页数:13
相关论文
共 50 条