On Global Optimality Conditions for Nonlinear Optimal Control Problems

被引:0
|
作者
F.H. Clarke
J.-B. Hiriart-Urruty
Yu.S. Ledyaev
机构
[1] Institut Desargues,
[2] Université Lyon I (Bâtiment 101),undefined
[3] Université Paul Sabatier,undefined
[4] Steklov Institute of Mathematics,undefined
来源
关键词
Optimal control; Pontryagin maximum principle; Global optimality;
D O I
暂无
中图分类号
学科分类号
摘要
Let a trajectory and control pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} maximize globally the functional g(x(T)) in the basic optimal control problem. Then (evidently) any pair (x,u) from the level set of the functional g corresponding to the value g(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document}(T)) is also globally optimal and satisfies the Pontryagin maximum principle. It is shown that this necessary condition for global optimality of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} turns out to be a sufficient one under the additional assumption of nondegeneracy of the maximum principle for every pair (x,u) from the above-mentioned level set. In particular, if the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} satisfies the Pontryagin maximum principle which is nondegenerate in the sense that for the Hamiltonian H, we have along the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {{\text{max}}}\limits_u {\text{ }}H$$ \end{document}≢\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop {{\text{min}}}\limits_u {\text{ }}H$$ \end{document} on [0,T], and if there is no another pair (x,u) such that g(x(T))=g(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar x$$ \end{document}(T)), then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\bar x{\text{, }}\bar u{\text{)}}$$ \end{document} is a global maximizer.
引用
收藏
页码:109 / 122
页数:13
相关论文
共 50 条
  • [1] On global optimality conditions for nonlinear optimal control problems
    Clarke, FH
    Hiriart-Urruty, JB
    Ledyaev, YS
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (02) : 109 - 122
  • [2] Global Optimality Conditions for Optimal Control Problems with Functions of AD Alexandrov
    Strekalovsky, Alexander S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (02) : 297 - 321
  • [3] Global optimality conditions for nonlinear optimization problems
    Haitao Zhong
    Mingfa Zheng
    Wei Chen
    Aoyu Zheng
    [J]. Evolutionary Intelligence, 2024, 17 : 291 - 301
  • [4] Global optimality conditions for nonlinear optimization problems
    Zhong, Haitao
    Zheng, Mingfa
    Chen, Wei
    Zheng, Aoyu
    [J]. EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 291 - 301
  • [5] Global Optimality Conditions for Optimal Control Problems with Functions of A.D. Alexandrov
    Alexander S. Strekalovsky
    [J]. Journal of Optimization Theory and Applications, 2013, 159 : 297 - 321
  • [6] Optimality conditions for discrete optimal control problems
    Marinkovic, Boban
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (06): : 959 - 969
  • [7] Optimality Conditions for Discrete Optimal Control Problems
    Kong, Fang-Di
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORKS (WCSN 2016), 2016, 44 : 569 - 575
  • [8] Global Optimality Conditions for Nonnormal Control Problems
    Vinter, R. B.
    Mendoza, L. A.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (03) : 241 - 250
  • [9] Optimality Conditions for Nonregular Optimal Control Problems and Duality
    Vivanco-Orellana, V.
    Osuna-Gomez, R.
    Hernandez-Jimenez, B.
    Rojas-Medar, M. A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (03) : 361 - 382
  • [10] Discussion on Optimality Conditions of Fuzzy Optimal Control Problems
    Borzabadi, A. H.
    Heidari, M.
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2021, 29 (05) : 731 - 751