Convexity Properties of Some Entropies (II)

被引:0
|
作者
Ioan Raşa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Results in Mathematics | 2019年 / 74卷
关键词
Bernstein polynomials; entropies; functional equations; inequalities; -convex function; combinatorial identities; 26A51; 39B22; 39B62; 94A17; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
This is a continuation of the author’s paper “Convexity properties of some entropies”, published in Raşa (Results Math 73:105, 2018). We consider the sum Fn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x)$$\end{document} of the squared fundamental Bernstein polynomials of degree n, in relation with Rényi entropy and Tsallis entropy for the binomial distribution with parameters n and x. Several functional equations and inequalities for these functions are presented. In particular, we give a new and simpler proof of a conjecture asserting that Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} is logarithmically convex. New combinatorial identities are obtained as a byproduct. Rényi entropies and Tsallis entropies for more general families of probability distributions are considered. The paper ends with three new conjectures.
引用
收藏
相关论文
共 50 条
  • [21] Strong convexity of sandwiched entropies and related optimization problems
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (09)
  • [22] On quantum Renyi entropies: A new generalization and some properties
    Mueller-Lennert, Martin
    Dupuis, Frederic
    Szehr, Oleg
    Fehr, Serge
    Tomamichel, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [23] Some properties of generalized higher-order convexity
    Wasowicz, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (1-2): : 171 - 182
  • [24] On some properties of convexity indicators based on fuzzy morphology
    Popov, AT
    VISION GEOMETRY VI, 1997, 3168 : 385 - 390
  • [25] Some properties of abstract convexity structures on topological spaces
    Xiang, Shu-wen
    Yang, Hui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) : 803 - 808
  • [26] Some convexity properties of Dirichlet series with positive terms
    Cerone, Pietro
    Dragomir, Sever S.
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (07) : 964 - 975
  • [27] Some Convexity Properties of Certain General Integral Operators
    Macarie, Vasile Marius
    Breaz, Daniel
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [28] SOME CONVEXITY PROPERTIES OF MORPHISMS OF COMPLEX-SPACES
    VAJAITU, V
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (02) : 215 - 245
  • [29] Some New Properties for Degree-Based Graph Entropies
    Lu, Guoxiang
    Li, Bingqing
    Wang, Lijia
    ENTROPY, 2015, 17 (12) : 8217 - 8227
  • [30] One dimensional weighted Ricci curvature and displacement convexity of entropies
    Sakurai, Yohei
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1950 - 1967