This is a continuation of the author’s paper “Convexity properties of some entropies”, published in Raşa (Results Math 73:105, 2018). We consider the sum Fn(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_n(x)$$\end{document} of the squared fundamental Bernstein polynomials of degree n, in relation with Rényi entropy and Tsallis entropy for the binomial distribution with parameters n and x. Several functional equations and inequalities for these functions are presented. In particular, we give a new and simpler proof of a conjecture asserting that Fn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_n$$\end{document} is logarithmically convex. New combinatorial identities are obtained as a byproduct. Rényi entropies and Tsallis entropies for more general families of probability distributions are considered. The paper ends with three new conjectures.