Convexity Properties of Some Entropies (II)

被引:0
|
作者
Ioan Raşa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Results in Mathematics | 2019年 / 74卷
关键词
Bernstein polynomials; entropies; functional equations; inequalities; -convex function; combinatorial identities; 26A51; 39B22; 39B62; 94A17; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
This is a continuation of the author’s paper “Convexity properties of some entropies”, published in Raşa (Results Math 73:105, 2018). We consider the sum Fn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x)$$\end{document} of the squared fundamental Bernstein polynomials of degree n, in relation with Rényi entropy and Tsallis entropy for the binomial distribution with parameters n and x. Several functional equations and inequalities for these functions are presented. In particular, we give a new and simpler proof of a conjecture asserting that Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} is logarithmically convex. New combinatorial identities are obtained as a byproduct. Rényi entropies and Tsallis entropies for more general families of probability distributions are considered. The paper ends with three new conjectures.
引用
收藏
相关论文
共 50 条