A novel real-time driving fatigue detection system based on wireless dry EEG

被引:0
|
作者
Hongtao Wang
Andrei Dragomir
Nida Itrat Abbasi
Junhua Li
Nitish V. Thakor
Anastasios Bezerianos
机构
[1] National University of Singapore,Singapore Institute for Neurotechnology(SINAPSE), Centre for Life Sciences
[2] Wuyi University,School of Information Engineering
[3] National University of Singapore,Department of Biomedical Engineering
来源
Cognitive Neurodynamics | 2018年 / 12卷
关键词
Driving fatigue; Electroencephalogram; Dry electrodes; PSD and entropy; Channel selection;
D O I
暂无
中图分类号
学科分类号
摘要
Development of techniques for detection of mental fatigue has varied applications in areas where sustaining attention is of critical importance like security and transportation. The objective of this study is to develop a novel real-time driving fatigue detection methodology based on dry Electroencephalographic (EEG) signals. The study has employed two methods in the online detection of mental fatigue: power spectrum density (PSD) and sample entropy (SE). The wavelet packets transform (WPT) method was utilized to obtain the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} (4–7 Hz), α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (8–12 Hz) and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (13–30 Hz) bands frequency components for calculating corresponding PSD of the selected channels. In order to improve the fatigue detection performance, the system was individually calibrated for each subject in terms of fatigue-sensitive channels selection. Two fatigue-related indexes: (θ+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta +\alpha $$\end{document})/β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}/β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} were computed and then fused into an integrated metric to predict the degree of driving fatigue. In the case of SE extraction, the mean of SE averaged across two EEG channels (‘O1h’ and ‘O2h’) was used for fatigue detection. Ten healthy subjects participated in our study and each of them performed two sessions of simulated driving. In each session, subjects were required to drive simulated car for 90 min without any break. The results demonstrate that our proposed methods are effective for fatigue detection. The prediction of fatigue is consistent with the observation of reaction time that was recorded during simulated driving, which is considered as an objective behavioral measure.
引用
收藏
页码:365 / 376
页数:11
相关论文
共 50 条
  • [41] Lightweight YOLOM-Net for Automatic Identification and Real-Time Detection of Fatigue Driving
    Zhao, Shanmeng
    Peng, Yaxue
    Wang, Yaqing
    Li, Gang
    Al-Mahbashi, Mohammed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4995 - 5017
  • [42] REAL-TIME DETECTION OF BRAIN EVENTS IN EEG
    VIDAL, JJ
    PROCEEDINGS OF THE IEEE, 1977, 65 (05) : 633 - 641
  • [43] Real-Time Sleep Detection and Warning System to Ensure Driver's Safety Based on EEG
    Saleab, Michael S.
    Abd El Ghany, Mohamed A.
    Toma, Ramez M.
    Hofmann, Klaus
    2016 IEEE 19TH INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2016, : 231 - 236
  • [44] Real time stress detection system based on EEG signals
    Vanitha, V.
    Krishnan, P.
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 : S271 - S275
  • [45] REAL-TIME ALARM MONITORING SYSTEM FOR DETECTING DRIVER FATIGUE IN WIRELESS AREAS
    Fu, Rongrong
    Wang, Shutao
    Wang, Shiwei
    PROMET-TRAFFIC & TRANSPORTATION, 2017, 29 (02): : 165 - 174
  • [46] Real-time Pedestrian Detection for Autonomous Driving
    Yang, Zhiheng
    Li, Jun
    Li, Huiyun
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS), 2018, : 9 - 13
  • [47] Real-time Vehicle Detection for Highway Driving
    Southall, Ben
    Bansal, Mayank
    Eledath, Jayan
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 541 - 548
  • [48] A real-time wearable emotion detection headband based on EEG measurement
    Wei, Yang
    Wu, Yue
    Tudor, John
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 263 : 614 - 621
  • [49] Implementation of a closed-loop real-time EEG-based drowsiness detection system: Effects of feedback alarms on performance in a driving simulator
    Berka, C
    Levendowski, DJ
    Westbrook, P
    Davis, G
    Lumicao, MN
    Olmstead, RE
    Popovic, M
    Zivkovic, VT
    Ramsey, CK
    FOUNDATIONS OF AUGMENTED COGNITION, VOL 11, 2005, : 651 - 660
  • [50] Eye detection for a real-time vehicle driver fatigue monitoring system
    Coetzer, R. C.
    Hancke, G. P.
    2011 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2011, : 66 - 71